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Abstract: Error methods – compared with uncertainty 
methods – offer simpler, more intuitive and practical 
procedures for calculating measurement uncertainty and 
conducting quality assurance in laboratory medicine. 
However, uncertainty methods are preferred in other 
fields of science as reflected by the guide to the expres-
sion of uncertainty in measurement. When laboratory 
results are used for supporting medical diagnoses, the 
total uncertainty consists only partially of analytical vari-
ation. Biological variation, pre- and postanalytical varia-
tion all need to be included. Furthermore, all components 
of the measuring procedure need to be taken into account. 
Performance specifications for diagnostic tests should 
include the diagnostic uncertainty of the entire testing 
process. Uncertainty methods may be particularly use-
ful for this purpose but have yet to show their strength in 
laboratory medicine. The purpose of this paper is to eluci-
date the pros and cons of error and uncertainty methods 
as groundwork for future consensus on their use in prac-
tical performance specifications. Error and uncertainty 

methods are complementary when evaluating measure-
ment data.

Keywords: measurement uncertainty; performance speci-
fication; quality control; total error.

Introduction
The concept “total error” (TE) has different meanings to 
different authors and has also changed its definition over 
time [1, 2]. However, the widespread use of “total analyti-
cal error” (TAE) in laboratory medicine represent a testi-
mony to its practical value.

The Milan conference on quality specifications resulted 
in a “consensus statement” published in 2015 [3], derived 
from the previous Stockholm consensus for performance 
specifications [4]. Recent developments contributing to 
the incentives for organizing the conference included the 
requirement of ISO 17025 and 15189 accreditation stand-
ards that laboratories routinely provide the measurement 
uncertainty (MU) of the results, the harmonization of the 
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evaluation of proficiency testing procedures and recent 
challenges to the TE theory including the calculation of 
allowable total error (ATE) [5]. It was acknowledged during 
the Milan conference that many issues including TAE 
methods remain unresolved and needed further develop-
ment. An EFLM Task and Finish Group on total error (TFG-
TE) was established for that purpose.

TAE methods are firmly rooted in laboratory medi-
cine, but a transition to the MU methods has taken place 
in other fields of metrology. TAE methods are commonly 
intertwined with quality assurance, analytical perfor-
mance specifications and Six Sigma methods [2, 6–9], 
which are only partially included in this paper [9–12].

The aim of the present paper is to fulfill the task of 
the TFG-TE: to present a proposal on how to use the TE 
concept and how to possibly combine measures of bias 
and imprecision in performance specifications. The theo-
retical and practical underpinning of TAE and uncertainty 
methods are presented as groundwork for future consen-
sus on their use in practical performance specifications.

This paper presents the consensus as reached within 
the EFLM task group but does however not represent a 
general EFLM consensus.

Materials and methods
The Delphi method [13], widely used method for achieving 
convergence of opinions of experts, was used. Two Delphi 
iterations were used. After an initial discussion phase of 
8  months in which different views were presented, lit-
erature was exchanged and monographs were written, 
37 statements were selected from the submitted texts and 
presented together with appropriate explanations. Eleven 
participants were subsequently invited to state their agree-
ments or disagreements with the statements in writing. 
The chair of the TFG acted as moderator (WO). The TGF 
met to discuss the manuscript at the Warsaw EFLM-UEMS 
congress, in September 2016.

Results
It was agreed to use the terminology of Joint Committee 
on Guides in Metrology (JCGM) as expressed in the VIM 
[14] and GUM [15]. The terminology of VIM is notably 
not neutral regarding uncertainty models and does not 
include a definition of TAE.

Measurement error or simply error is a property of a 
single measurement – “measured quantity value minus 

a reference quantity value” [14]. Random measurement 
error is the component of measurement error that in rep-
licate measurements varies in an unpredictable manner, 
whereas the systematic error remains constant – or varies 
in a predictable manner. The concept of error assumes that 
the difference between the measurement result and the 
“true value” or reference quantity value can be calculated.

Guide to the expression of uncertainty in measure-
ment (GUM) and International Vocabulary of Metrology 
(VIM) do not use the concept of “true value”. This is among 
the fundamental reasons why the concepts of TAE and MU 
seem incompatible. In the error perspective, measure-
ment is seen as a process aimed at discovering quantity 
values, which have an independent existence (the “true 
values”). The better they are approximated, the less will 
be the error in the measurement result. MU – in contrast – 
conceives of no preexisting references or true values; ulti-
mately, measurement results should be characterized in 
terms of the belief a subject attributes to them, expressed 
as the uncertainty of such results [16].

In 1974, Westgard et  al. [1] introduced the concept 
of TAE in an effort to provide a quantitative measure for 
the acceptability of measurement method performance 
especially for proficiency testing. Reference laboratories 
estimate imprecision and bias separately by replicate 
measurements. In clinical laboratories, however, patient- 
and quality assurance samples are routinely assayed only 
once. TAE in these circumstances depends on the com-
bined effect of the random and systematic errors of the 
method, which is compared with a defined allowable or 
permissible total error (pTAE, or total error allowable). 
TAE defines the maximum error for patient results that 
a single result can show with a certain probability, e.g. 
95% or 99%. TAE thus estimates the limits of an interval 
around the true value where measured analytical results 
can be found with a defined probability. The TAE model 
further assumes that the difference between the patients’ 
result and the true value can be estimated primarily from 
results from proficiency testing or from internal quality 
assurance. For many quality assurance applications, 
there is no need for separate performance goals for bias 
and imprecision.

Lately, efforts have been made to expand the TAE 
concept to the evaluation of results of patient samples, 
including all phases of the total testing process [2, 8, 9]. 
However, several additional sources of errors influence 
patient samples compared with control samples, e.g. pre-
analytical factors, patient factors (e.g. posture), matrix 
factors (calibrators or control samples that differ from the 
matrix in the patient samples), and interferences (e.g. in 
hemolytic, icteric or lipemic samples, drugs).
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The concepts of bias 
and imprecision
Bias is the difference between the average of measure-
ments made on the same sample and its reference [14, 
17]. References are of two types: the reference defining 
the hypothetical error-free “true value” and the prag-
matic reference or target value with an assigned value, 
e.g. quality control material procedures. The primary 
choice for estimating analytical bias is the use of a cer-
tified reference material (CRM) [18]. Optimal reference 
materials are not always available, especially when the 
measured quantity cannot not be unequivocally defined. 
Comparison with a reference method [14] can also be 
used for bias estimation. Sometimes, neither a CRM nor 
a reference method is available [19, 20], making a case 
for a reference that has a value assigned to it by agree-
ment [20].

It is important to distinguish between short-term bias 
(e.g. within day, one shift) and long-term bias (e.g. during 
several weeks or months): many effects causing short-
term bias, e.g. recalibrations may be seen as bias within 
this short time frame but may be indistinguishable from 
random effects when variation is observed over a longer 
period. When uncorrected, many short-term bias compo-
nents increasingly contribute to the random error compo-
nent of the MU.

In the case where samples of a particular patient are 
semirandomly allocated within a larger laboratory organi-
zation to different laboratories, several bias components 

will affect the result. This randomness may also be indis-
tinguishable from imprecision (Figure 1).

Bias is included in the conventional TAE model as a 
constant without uncertainty. MU methods take this uncer-
tainty into account. It is composed of the uncertainty of the 
values of the bias and of the reference standard. To improve 
the TAE estimation, the uncertainty of the bias was sug-
gested to be incorporated into TAE calculation (note 3).

Precision is a concept of quality that is estimated quan-
titatively as its opposite – imprecision – and expressed 
as standard deviation or coefficient of variation (CV) [17]. 
Imprecision is estimated along a gradient between two 
extremes depending on the measuring conditions. One 
extreme is the repeatability condition where it is estimated 
by the same operator under conditions of the same labora-
tory, apparatus, method, material and within a short period. 
The other extreme is the reproducibility condition where 
the same sample is measured during extended periods 
(weeks, months or years) in different laboratories, involv-
ing different operators and measuring systems, methods, 
laboratory environments, management and quality assur-
ance policies, and even different test methods. Intermedi-
ate conditions are conditions in between the two extremes, 
which need to be specified (see ISO 5725-1:1994).

Performance specifications

Westgard and Barry described performance specifica-
tions in terms of the TAE that can be tolerated in a test 

Figure 1: In the common situation where the samples of a particular patient are semirandomly allocated to different laboratories, reagents 
or reagent lots, measurement systems and operators, several bias components affecting the (hypothetical) true concentration value need to 
be considered and dealt with.
This randomness may be indistinguishable from imprecision.
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result without compromising its medical usefulness [21]. 
Cembrowski and Carey [22] referred to quality goals in 
terms of the maximum clinically allowable error in a test 
result. When this paradigm is used to evaluate QC strate-
gies, the primary performance measure of interest should 
be related to the probability of reporting a test result 
that contains an analytical error that exceeds the pTAE 
specification [23].

Recently, criteria were formulated to assign measur-
ands to appropriate models for analytical performance 
specifications [24]. The preferred performance specifi-
cation model is based on clinical needs. However, this 
model can at present only be applied for only a few meas-
urands (e.g. HbA1c and cholesterol). The second model is 
based on (components of) biological variation and can 
be applied for measurands that are in steady state or can 
be “transformed” to a steady-state situation in biological 
fluids [24]. A third model is based on the state of the art 
and can be applied in cases where models 1 and 2 cannot 
be used.

Since the study of Tonks [25], several alternative for-
mulas have been suggested for calculating performance 
specifications based on biological variation. A review of a 
number of models based on between- and within-subject 
biological variation led to the notion, “A striking feature 
is the fact that all of the individual approaches recom-
mend numbers for analytical standard deviation near or 
equal to 0.5 times the biological standard deviation” [26]. 
Expressed as analytical and biological coefficients of vari-
ation, CVA < 0.5CVB. In the case of monitoring, CVI is used 
instead of CVB.

Some measurands are subject to tight homeostatic 
control (e.g. electrolytes), lending themselves to very strict 
performance specifications. Three quality levels are used 
for imprecision and bias [27].

Imprecision Bias

Optimum quality CVA ≤ 0.25CVI |B| ≤ 0.125CVB

Desirable quality CVA ≤ 0.5CVI |B| ≤ 0.25CVB

Minimum quality CVA ≤ 0.75CVI |B| ≤ 0.375CVB

These specifications do not combine specifications 
for imprecision and bias. The term for bias is equal to that 
derived from the model of Gowans et al. [28] (see below).

Performance specifications set limits for a test to 
establish whether the test is acceptable for routine use. 
Different specifications are needed for screening, diag-
nosis and monitoring. This also includes optimum goals 
that may be unachievable by current state-of-the-art pro-
cedures. It is vital to obtain a tool for defining the ideal 
specifications without the influence of the actual (or state 

of the art) analytical quality, as this will set a goal for 
manufacturers.

It might seem logical to apply the same limits for ana-
lytical performance as limits for internal quality assur-
ance. However, there are reasons to set different limits: 
quality assurance applies rules to achieve a high prob-
ability of error detection and low probability of false 
rejection based on a singleton result. Quality assurance 
limits will generally be stricter than performance limits 
in order to maintain the performance goals and assure 
that – within a predefined probability – these goals are 
achieved.

Combining bias and imprecision 
and calculation of pTAE

Combining bias and imprecision specifications to set 
quality limits based on biological variation was proposed 
by Fraser and Petersen in 1993 [29, 30]:

	 = + +2 2 1/2
I G IpTAE 0.25(CV CV )  1.65(0.5CV ) � (1)

The performance specification was proposed for profi-
ciency testing but has been extensively used to define 
specifications for other purposes [31]. The term for bias is 
again that of Gowans et al. [28], combined with the gen-
erally accepted maximum imprecision of 0.5CVI (with a 
coverage factor of 1.65, 95% one-sided). This expression 
defines a constant value for pTAE and shows a linear rela-
tionship between bias and imprecision.

In contrast with this conventional linear model is the 
curved model proposed by Gowans et  al. [28]. With the 
transferability of reference intervals as starting point, the 
permissible bias and imprecision are calculated based on 
the premise that the reference interval limits will remain 
valid. Because of the inclusion of the biological variation 
in the model, the resulting relationship between maximum 
permissible bias and imprecision is curved (see Figure 2) 
where the related model of Larsen et al. [32] is used.

The model of Gowans and other reference limit-based 
models define reference limits based on biological varia-
tion alone as a simplification. Oosterhuis and Sandberg 
[33] adapted the model of Gowans et al. [28] to include the 
influence of analytical variation on the reference interval. 
Even inclusion of analytical variation, however, might 
lead to an underestimation of the actual reference interval 
limits, e.g. because of preanalytical variation (note 2). As 
an alternative, the actual reference interval limits can be 
used as starting point in the model [34]. It should be noted 
that in most distributions, CVG and CVI are log-Gaussian, 
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as are most reference ranges [35]. Performance specifica-
tions derived from biological data should ideally be based 
on this log-Gaussian distribution [36]. Other models com-
bining bias and imprecision for calculation of pTAE might 
also be considered (e.g. [37–40]).

Considerations regarding the TE model

Two modes should be distinguished in proficiency testing 
and ICQ: the singleton and the multiple measurements of 
specimens. With a singleton IQC result, we only have the 
accuracy of the actual result: the difference of the meas-
urement result and the target value (in other words the 
TAE). There is no way of distinguishing bias and random 
error components. This value has to be compared with a 
tolerance limit. However, during extended periods, the 
laboratory can in retrospect distinguish between bias and 
imprecision. This information can be derived from quality 
assurance results (both IQC and appropriately designed 
proficiency testing programs). In that perspective, bias 
and imprecision should be (and are) evaluated sepa-
rately. Reduction of bias and imprecision call for different 
measures.

Essential statistical considerations govern the possi-
bility to combine bias and imprecision. Bias has a sign, 
either positive or negative, whereas the standard devia-
tion represents an interval of quantity values. In the 
CLSI-EP21, the absolute value of the bias is suggested to 
always be added to the imprecision [41]. In Rili-BAEK, the 

squared variance and a squared bias are added before 
taking the square root of the sum [12, 42]. A statisti-
cally correct addition of orthogonal variances using the 
Pythagorean theorem depends on the elimination of bias 
– as demanded by GUM.

The caveat with using a single statistic for the 
maximum permissible error is that the impact or accept-
ability of its different components is unknown, although 
bias and imprecision work out quite differently. The same 
TAE value can result from a low bias and a high impreci-
sion and vice versa. Based on models for diagnosis (e.g. 
HbA1c in diabetes), bias and imprecision have quite differ-
ent effects on the proportion of false positives and false 
negatives [42]. HbA1c is a good example for which there are 
separate goals for bias (±2%) and imprecision (3%). The 
pTAE of ±6% is used for practical purposes, e.g. as by the 
College of American Pathologist’s for grading HbA1c profi-
ciency testing surveys. This data compression might not 
serve the purpose of goal setting or clinical performance 
description [12].

pTAE is frequently calculated based on biological var-
iation [28, 43]. The conventional linear model (expression 
1) has been criticized for a number of reasons [5]:
1.	 Both maxima of permissible bias and imprecision 

are added to obtain pTAE, a pragmatic solution first 
proposed for the use in proficiency testing [33]. The 
theoretical basis for this is lacking. Two maximum 
permissible errors are added, derived under the 
mutually exclusive assumptions of zero bias and 
zero imprecision, respectively. The sum will allow an 
increase of the percentage of test results exceeding 
the predefined limits.

2.	 The performance specification for imprecision is in 
general CVA < 0.5CVB. In the case of diagnosis, this 
can be written as CVA < 0.5(CVI

2 + CVG
2)1/2. In case of 

monitoring, only the within-subject variation CVI is 
included. The maximum permissible bias was derived 
as 0.25CVB or 0.25(CVI

2 + CVG
2)1/2. It should be noted, 

however, that in the conventional model, this bias 
term is applied in the case of monitoring although this 
expression had been derived from a reference range 
model and only applies to diagnosis. As an alterna-
tive, a model based on a reference change value 
model was developed that is only based on CVI and 
not on CVG [32].

3.	 The conventional linear TAE model takes into account 
only the analytical variation and the bias. When a tol-
erance limit is defined at zSD – assuming a Gaussian 
distribution – with a fixed number of test results out-
side this limit (e.g. 5% at z = 1.64), the combinations 
of bias and imprecision (CVA) fulfilling this condition 

Figure 2: Relationship between maximum permissible imprecision 
and bias in the case of CK.
The conventional model (z = 2, 2.3% outside limit, one sided) shows 
a linear relationship that leads to a constant value for pTAE (30%, 
equal to the bias at CVA = 0). In the model including biological vari-
ation, there is a curved relationship between imprecision and bias. 
pTAE is not a constant in this model (in this example: range 7.5% 
(CVA = 0) – 18.8% (CVA = 11.4%) [32]. See note 4.
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show a straight line with a slope of –z (see also 
Figure 2, TAE conventional with z = 2). At one extreme 
of the line, we have bias = 0, with CVa = pTAE/z; at the 
other extreme, we have CVA = 0 (a hypothetical value) 
and bias = pTAE. The straight line has the character-
istic that the tolerance limit pTAE, a combination of 
bias and imprecision, is a constant equal to the bias 
at CVA = 0. This linearity is of fundamental importance 
in the methods advocated by both J. Westgard and 
S. Westgard (www.westgard.com). This model is only 
valid when imprecision and bias are the only variables 
involved, or in other words, when the distribution of 
test results is Gaussian and completely defined by the 
analytical bias and imprecision alone. Thus – in its 
original form – the TE model does not include bio-
logical variation and other additional causes of varia-
tion into the model, except in the calculation of pTAE 
[1]. Biological variation, although not relevant when 
monitoring variation in control samples, is certainly 
relevant when dealing with patient samples [10].
Biological variation can be taken into account by 
including biological variation in the model transform-
ing the relationship between imprecision and bias 
into a curve (see Figure 2 Larsen et al. [32]). The con-
sequence is that the value of pTAE is not a constant in 
this model for any combination of bias and impreci-
sion (Figure 2).

4.	 It has been argued that the condition CVA < 0.5CVI 
relates to performance specifications that cannot be 
maintained by internal quality assurance (e.g. lead-
ing to a sigma metric below 3, see note 1). For that rea-
son, the 0.5 and the 0.25 coefficients for imprecision 
and bias might be questioned.

Measurement uncertainty

Uncertainty methods as endorsed by the BIPM [15] origi-
nated in physical measurements [44, 45], and chemistry 
was included as late as in the 1980s. Laboratories of chem-
istry and related sciences have struggled when adapting 
to  a long tradition established by physical metrology 
laboratories [45, 46].

The basic parameter of MU is the SD, and the symbol 
for uncertainty is u. In practice, bias correction can 
reduce systematic errors, and replicate measurements 
can diminish the effect of random errors. However, this 
cannot completely eliminate these errors. For that reason 
– according to the MU concept – the “true value” cannot 
be exactly known. A measurement result represents the 
“best estimate” of the measured quantity. The combined 

uncertainties of bias and imprecision provide an inter-
val of values within which the (unknowable, hypotheti-
cal) “true value” of the measured quantity is believed 
to lie, with a stated coverage probability (e.g. 95%). The 
MU concept also assumes that if the bias of a procedure 
is known, then steps are to be taken to minimize it, e.g. 
by recalibration. However, because the bias value cannot 
be known exactly, an uncertainty will be associated with 
such a correction. Thus, in the MU concept, a measure-
ment result can comprise two uncertainties: the uncer-
tainty associated with bias correction and the uncertainty 
due to imprecision. The uncertainties that act on the 
measurement result are combined to one MU statistic.

Current developments within the BIPM 
regarding future versions of GUM and VIM

According to GUM [15], MU reflects the lack of exact 
knowledge of the value of the measurand. Develop-
ments in MU also emphasize the relationship between 
the measurement itself and the theoretical models and 
philosophies underpinning the use of the measurement 
results [47–55].

The 1993/1995 version of the GUM catered for both 
uncertainty and error approaches [56]. Recent supple-
ments to the GUM and the latest version of VIM (VIM3) 
published in 2008 went completely in the direction of the 
uncertainty approach, including Bayesian statistics that 
ultimately relate to the uncertainty of diagnosis [57–59]. 
However, inconsistencies between the supplements and 
the main GUM text have been pointed out repeatedly [60–
62], shedding a light on an obvious need to harmonize 
the approaches to error and uncertainty. Professor Luca 
Mari, a long-time member of the JCGM Working Group on 
the International Vocabulary of Metrology (VIM), has in 
multiple recent publications, e.g. in [16, 47], made a case 
that error and uncertainty methods are not only compat-
ible but also complementary when evaluating measure-
ment data. Our working group finds this approach highly 
appropriate for use in medical laboratories.

It should be noted that models for the calculation of 
permissible maximum bias and maximum imprecision 
are not restricted to either MU or TAE, but the results of 
these calculations are applicable in both paradigms. In 
IQC, the TAE and MU models approach each other and can 
become similar, and the goal setting developed in the TAE 
model combining bias and imprecision is also applicable 
for MU [11].

According to ISO 15189 [63], MU should be made avail-
able by the laboratory on request. Careful interpretation is 
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needed, as MU is already taken into account also in other 
test characteristics such as sensitivity, specificity, predic-
tive value, etc. Physicians might correct decision levels 
knowing the MU of a test, taking MU into account again. 
Analytical variation as well as other sources of uncer-
tainty, including biological and preanalytical variation, 
are already reflected in reference interval limits and are 
(or should be) also taken into account in decision limits 
in clinical guidelines, as “grey zones”, and borderline 
areas. Lower MU results in higher predictive values and 
lower clinical uncertainty. This might even lead to a dif-
ferent clinical application of the test, with HbA1c assays as 
a typical example. The improved reliability of the results 
made expert organizations revise the guidelines and rec-
ommend HbA1c for diagnosis. Such an improved clini-
cal uncertainty is also seen with high-sensitive troponin 
assays.

The problem of the unknown true value in relation 
to the definition of error is circumvented in VIM by defin-
ing the error with respect to the reference quantity value. 
This serves a “surrogate true value” within the system 
(or model), e.g. in the case of internal quality assurance 
or proficiency testing samples. In the case of patient test 
results, only an estimated value (or probability) can be 
assigned to the TE.

We attempt to understand the real world by model-
ling it. Within a model, we can measure values and make 
our interpretations within the assumptions of the model. 
Within the model, we do have “true” values. However, 
between the modeled values and the real world, there are 
many uncertainties.

Transposed to our laboratory, this translates to the fol-
lowing (Figure 3): our model consists of calibrators with 
assigned values and internal quality assurance materials 
with target values. These are our “true” values, and we 
can very well express error (trueness) as a number. Profi-
ciency testing, reference methods and certified reference 
standards represent another model of another level.

However, the measurement of patient samples can be 
seen as an entity in the real world and knowing the “real” 
value of the measurands is impossible. Here we can follow 
the VIM approach, starting with a reference quantity value 
for our standards and calibrators. The reference quantity 
value (or reference standard) is determined by the agreed-
upon reference method. Therefore, the “analytically” real 
value of a measurand in the patient sample is the value 
ultimately traceable to the reference method. The meas-
urement procedure and other sources of variation will 
contribute to the combined MU of the final measurement 
result.

Figure 3: Illustration of the use of MU methods for patient samples and TAE methods for proficiency testing.
A target value is defined for the proficiency testing sample, which is used for calculating error. In patient samples, uncertainty methods esti-
mate the confidence we can have in the measurement result for the purpose of diagnosis. Proficiency testing and measurement uncertainty 
are related through the traceability chain to the reference standard. The dotted lines indicate efforts to eliminate bias.
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Both TAE and MU theory are related to traceabil-
ity. “Comparability of results across laboratories” must 
be the goal of the TAE concept. The bias concept in the 
TAE is in fact related to “traceability”: TAE relates to the 
difference of the results with a true (reference) value 
and in this way includes the traceability of the results. 
What is ignored in the traditional TAE is the degree of 
the reliability of the transference of the assigned value 
through the traceability chain and also the reliability of 
the experiment used for the determination of bias. MU, 
through incorporating these sources of uncertainty, can 
help TAE to be an improved measure of traceability of 
results.

Discussion
TAE methods for quantifying the quality of measuring 
systems and defining performance specifications are 
widely used in laboratory medicine. They are appropri-
ate for analyzing data from single measurement results in 
proficiency testing schemes and may constitute a basis for 
the calculation of performance.

The ultimate aim of measuring patient samples in 
laboratory medicine is to improve the understanding 
of possible disease conditions or to monitor treatment 
effects. This aim is influenced by the uncertainties not 
only of the measuring system but also by biological, pre-
analytical and postanalytical uncertainty components. 
This is represented in the Bayesian model used by MU 
that takes into account all uncertainty components, 
including bias and imprecision, that effect the measure-
ment result.

Although TAE is generally understood as total ana-
lytical error, the types of errors included in the TE defini-
tion are varied: preanalytical errors, biological variation 
and postanalytical errors. It has been argued that the TE 
concept only deserves the predicate “total” when all kinds 
of errors are included [11]. Notably, the permissible TAE 
is often derived from reference intervals [36, 64, 65] that 
are substantially influenced by other types of errors (vari-
ation) than the analytical variation.

Recent developments in the philosophy of measure-
ment sciences, including those within the BIPM/JCGM, 
indicate that more than one philosophical outlook and 
a corresponding selection of different measurement 
uncertainty calculations may be endorsed. Therefore, it 
seems prudent to continue the use of TAE methods and 
when appropriate replace them with MU calculations 
when the latter offer proven advantages.

Among the major challenges that error methods face 
are the following:
1.	 There are several variants in how the calculations 

of TAE are being performed and used, with flaws in 
pTAE calculations [5].

2.	 The concept of the “true value” has been abandoned 
in metrology. If a true value cannot be known, TAE 
cannot be estimated. We must use “surrogate true val-
ues” to estimate TAE.

3.	 TE models do not appreciate the uncertainty of bias 
estimation/correction.

MU methods in laboratory medicine also face several 
challenges:
1.	 Error methods are well understood and widely imple-

mented in laboratories. Procedures for implementing 
them in ISO accreditation schemes are well accepted 
by accreditation authorities. Therefore, there are no 
incentives for leaving error methods in favor of uncer-
tainty methods.

2.	 Methods to calculate “permissible MU” as well as 
quality assurance procedures based on MU theory are 
not well developed.

3.	 Unfamiliarity with uncertainty calculations within 
most laboratories [66].

4.	 The level of knowledge regarding other causes of vari-
ation than analytical variation including biological 
variation, preanalytical and postanalytical variation 
needed for the estimation of MU is still limited.

Uncertainty methods, according to GUM, are in the early 
phases of implementation in laboratory medicine in Aus-
tralia [40, 66, 67]. The majority of other countries rely on 
classic top-down uncertainty calculations, sometimes 
using ANOVA, covariance analysis and variance compo-
nent analysis [68–70].

Imprecision can be estimated as repeatability impre-
cision at the one extreme, and reproducibility impreci-
sion at the other, with intermediate imprecisions in 
between. Similarly, bias needs to be estimated separately 
in the context of the time frame and also the complex-
ity of the measuring systems, including several measur-
ing systems in different laboratories within a laboratory 
organization (Figure 1). Quality assurance in laboratory 
medicine needs to be more comprehensively developed 
to address a situation far more complicated than a single 
analyzer working in batch mode, for which it was origi-
nally developed. The current situation includes large lab-
oratory conglomerates with multiple analyzers working 
continuously. The most important tasks for laboratory 
conglomerates are (1) to reduce between-analyzer bias 
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and (2) to identify and technically correct measuring 
systems with excessive imprecision. Performance speci-
fications should be related to the properties of a whole 
diagnostic organization including all its measuring 
systems for diagnosing and monitoring patients. These 
performance specifications are not yet sufficiently devel-
oped despite the fact that ISO 17025 and 15189 require 
laboratories and conglomerates of laboratories to esti-
mate the overall uncertainty.

Bias and imprecision are different error types with dif-
ferent causes that obviously require different means of cor-
rection. Medical laboratories should therefore establish and 
maintain routines for estimating and minimizing them sep-
arately. Bias, however, remains a complicating factor. MU 
methods advocate correcting bias and include the uncer-
tainty of bias correction. Short-term bias may be indistin-
guishable from random effects when variation is observed 
over extended periods and may contribute to the random 
error component of the MU. There are many methods for 
combining bias and imprecision, but each method repre-
sents some kind of concession, assumption or reduction. 
Further research and development in this area is needed in 
order to establish consensus on methods that are optimal 
for medical laboratories.

Analytical performance specifications should take the 
diagnostic uncertainty of the whole testing process into 
account. MU methods according to GUM have not been 
sufficiently developed to deal with diagnostic uncertainty 
in laboratory medicine. Development of analytical perfor-
mance specifications for diagnostic uncertainty has the 
potential of creating a paradigm shift in laboratory medi-
cine resulting in quality improvements and improved use 
of diagnostic methods. In anticipation of this paradigm 
shift, error methods remain the most used methods for 
quality assurance and analytical performance specifica-
tions in laboratory medicine. Currently, error and uncer-
tainty methods are complementary when evaluating 
measurement results in medical laboratories.
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Notes
Note 1. Calculation of sigma metric.
ATE = Bias + 1.65(0.5CVB)
Sigma metric = (ATE-Bias)/CVA

 = (Bias + 1.65(0.5CVB))/CVA with bias = 0
 = (0.25CVB + 0.825CVB)/CVA

 = 1.075CVB/CVA  with CVA = 0.5CVB

 = 2.15 CVA/CVA

Sigma metric = 2.15

Note 2. An example is sodium, with: CVI = 0.6%; 
CVG = 0.7%, CVA = 0.58%, the calculated reference inter-
val (with CVtot =  CVI

2 + CVG
2 + CVA

2) is 137–143  mmol/L. 
The actual reference interval of this laboratory is 
135–145 mmol/L, a 40% difference that will be reflected 
in the pTAE. The extra variation will be caused by 
preanalytical and other factors.

Note 3. Here is where the term uncertainty of bias (UB) 
needs to be addressed. The difference between the tradi-
tional TAE and MU is that MU adds UB to the SD. We can 
use UB in the TAE calculation to get an estimation of TE as 
(Uc = uncertainty of concentration):

= + +2 2 0.5
B ATAE B k *(U SD )

= + cTAE B k * U

= +TAE B MU

If bias is zero (either absent from the beginning or 
removed via recalibration or correction), then the pre-
vious equation becomes TAE = MU. According to MU 
concept, bias should be corrected when known, and the 
uncertainty of this correction was included.

Note 4. Strictly speaking, these models are difficult to 
compare: The model of Larsen is aimed at monitoring and 
only includes CVI. The other model – although used for 
monitoring – includes both CVI and CVG as discussed in 
section, which is considered a flaw in this model.

References
1.	 Westgard JO, Carey RN, Wold S. Criteria for judging precision 

and accuracy in method development and evaluation. Clin Chem 
1974;20:825–33.

2.	 Westgard JO. Useful measures and models for analytical quality 
management in medical laboratories. Clin Chem Lab Med 
2016;54:223–33.

Unauthenticated
Download Date | 8/28/17 9:11 PM



10      Oosterhuis et al.: Total error

3.	 Sandberg S, Fraser CG, Horvath AR, Jansen R, Jones G, 
Oosterhuis W, et al. Defining analytical performance specifica-
tions: consensus statement from the 1st Strategic Conference 
of the European Federation of Clinical Chemistry and Laboratory 
Medicine. Clin Chem Lab Med 2015;53:833–5.

4.	Kenny D, Fraser CG, Petersen PH, Kallner A. Consensus agree-
ment. Scand J Clin Lab Inv 1999;59:585.

5.	 Oosterhuis WP. Gross overestimation of total allowable error 
based on biological variation. Clin Chem 2011;57:1334–6.

6.	Westgard JO, Westgard SA. Assessing quality on the Sigma 
scale from proficiency testing and external quality assessment 
surveys. Clin Chem Lab Med 2015;53:1531–5.

7.	 Westgard SA. Utilizing global data to estimate analytical 
performance on the Sigma scale: a global comparative analysis 
of methods, instruments, and manufacturers through exter-
nal quality assurance and proficiency testing programs. Clin 
Biochem 2016;49:699–707.

8.	Westgard S. Quality Goals at the Crossroads: Growing, Going, 
or Gone? 2016. Available at: http://www.westgard.com/gone-
goals-gone.htm. Accessed: 30 July 2017.

9.	Westgard JO, Westgard SA. Quality control review: implementing 
a scientifically based quality control system. Ann Clin Biochem 
2016;53(Pt 1):32–50.

10.	 Panteghini M, Sandberg S. Total error vs. measurement uncer-
tainty: the match continues. Clin Chem Lab Med 2016;54:195–6.

11.	 Oosterhuis WP, Theodorsson E. Total error vs. measurement uncer-
tainty: revolution or evolution? Clin Chem Lab Med 2016;54:235–9.

12.	 Kallner A. Is the combination of trueness and precision in one 
expression meaningful? On the use of total error and uncertainty 
in clinical chemistry. Clin Chem Lab Med 2016;54:1291–7.

13.	 Dalkey NC, Helmer O. An experimental application of the Delphi 
method to the use of experts. Manag Sci 1963;9:458–67.

14.	 JCGM. International vocabulary of metrology – basic and general 
concepts and associated terms (VIM 3): Bureau International 
des Poids et Mesures; 2012. [3 edition] Available at: http://www.
bipm.org/utils/common/documents/jcgm/JCGM_200_2012.
pdf. Accessed: 30 July 2017.

15.	 JCGM. Evaluation of measurement data – guide to the expression 
of uncertainty in measurement. JCGM 100:2008, GUM 1995 with 
minor corrections. Available at: http://www.bipm.org/utils/com-
mon/documents/jcgm/JCGM_100_2008_E.pdf. Accessed: 30 
July 2017. Joint Committee for Guides in Metrology, 2008.

16.	 Mari L. The ‘error approach’ and the ‘uncertainty approach’: are 
they incompatible? Leiden: Lorentz Center, 2011.

17.	 Menditto A, Patriarca M, Magnusson B. Understanding the 
meaning of accuracy, trueness and precision. Accred Qual Assur 
2007;12:45–7.

18.	 De Bievre P. On ‘trueness control materials’, better known 
under the multi-purpose term of ‘Certified Reference Materials’ 
(CRMs). Accredit Qual Assur 2010;15:71–2.

19.	 Vesper HW, Miller WG, Myers GL. Reference materials and com-
mutability. Clin Biochem Rev 2007;28:139–47.

20.	Greg Miller W, Myers GL, Lou Gantzer M, Kahn SE, Schonbrunner 
ER, Thienpont LM, et al. Roadmap for harmonization of clinical 
laboratory measurement procedures. Clin Chem 2011;57: 
1108–17.

21.	 Westgard JO, Seehafer JJ, Barry PL. Allowable imprecision for 
laboratory tests based on clinical and analytical test outcome 
criteria. Clin Chem 1994;40:1909–14.

22.	Cembrowski GS, Carey RN. Considerations for the implementa-
tion of clinically derived quality control procedures. Lab Med 
1989;20:400–5.

23.	Parvin CA. Quality-control (QC) performance measures and the 
QC planning process. Clin Chem 1997;43:602–7.

24.	Ceriotti F, Fernandez-Calle P, Klee GG, Nordin G, Sandberg S, 
Streichert T, et al. Criteria for assigning laboratory measurands 
to models for analytical performance specifications defined 
in the 1st EFLM Strategic Conference. Clin Chem Lab Med 
2017;55:189–94.

25.	 Tonks DB. Quality control systems in clinical chemistry 
laboratories. Postgrad Med 1963;34:A58–70.

26.	Stöckl D, Baadenhuijsen H, Fraser CG, Libeer J-C, Petersen 
PH, Ricós C. Desirable routine analytical goals for quantities 
assayed in serum. Discussion paper from the members of the 
external quality assessment (EQA) working group A on analyti-
cal goals in laboratory medicine. Eur J Clin Chem Clin Biochem 
1995;33:157–69.

27.	 Fraser CG, Petersen PH, Libeer JC, Ricos C. Proposals for setting 
generally applicable quality goals solely based on biology. Ann 
Clin Biochem 1997;34(Pt 1):8–12.

28.	Gowans EM, Peteresen PH, Blaabjerg O, Hörder M. Analytical 
goals for the acceptance of common reference intervals for labo-
ratories throughout a geographical area. Scand J Clin Lab Invest 
1988;48:757–64.

29.	Fraser CG, Petersen PH. Quality goals in external quality 
assessment are best based on biology. Scand J Clin Lab Invest 
1993;53:8–9.

30.	Fraser CG, Peterson PH. Desirable standards for laboratory 
tests if they are to fulfill medical needs. Clin Chem 
1993;39:1447–5.

31.	 Ricos C, Alvarez V, Cava F, Garcia-Lario JV, Hernandez A, 
Jimenez CV, et al. Desirable specifications for total error, 
imprecision, and bias, derived from intra- and inter-individual 
biologic variation. Available at: http://www.westgard.com/
biodatabase1.htm. Accessed: 30 July 2017.

32.	Larsen ML, Fraser CG, Petersen PH. A comparison of analytical 
goals for haemoglobin A1c assays derived using different strate-
gies. Ann Clin Biochem 1991;28(Pt 3):272–8.

33.	Oosterhuis WP, Sandberg S. Proposal for the modification of the 
conventional model for establishing performance specifications. 
Clin Chem Lab Med 2015;53:925–37.

34.	Haeckel R, Wosniok W, Postma T. Quantity quotient report-
ing. Comparison of various models. Clin Chem Lab Med 
2015;53:1921–6.

35.	 Petersen PH, Stockl D, Blaabjerg O, Pedersen B, Birkemose E, 
Thienpont L, et al. Graphical interpretation of analytical data 
from comparison of a field method with reference method by use 
of difference plots. Clin Chem 1997;43:2039–46.

36.	Haeckel R, Wosniok W, Gurr E, Peil B. Permissible limits for 
uncertainty of measurement in laboratory medicine. Clin Chem 
Lab Med 2015;53:1161–71.

37.	 Asberg A, Odsaeter IH, Carlsen SM, Mikkelsen G. Using the 
likelihood ratio to evaluate allowable total error – an exam-
ple with glycated hemoglobin (HbA(1c)). Clin Chem Lab Med 
2015;53:1459–64.

38.	Oddoze C, Lombard E, Portugal H. Stability study of 81 analytes 
in human whole blood, in serum and in plasma. Clin Biochem 
2012;45:464–9.

Unauthenticated
Download Date | 8/28/17 9:11 PM

http://www.westgard.com/gone-goals-gone.htm
http://www.westgard.com/gone-goals-gone.htm
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.westgard.com/biodatabase1.htm
http://www.westgard.com/biodatabase1.htm


Oosterhuis et al.: Total error      11

39.	McDonald R. Quality assessment of quantitative analytical 
results in laboratory medicine by root mean square of measure-
ment deviation. J Lab Med 2006;30:111–7.

40.	White GH, Farrance I, AACB Uncertainty of Measurement Working 
Group. Uncertainty of measurement in quantitative medical 
testing: a laboratory implementation guide. Clin Biochem Rev 
2004;25:S1–24.

41.	 Astles JR, Person NB, Armbruster DA, Pierson-Perry JF, 
Kondratovich MV, Scott MG, et al. CLSI-EP21, Evaluation of 
total analytical error for quantitative medical laboratory 
measurement procedures, 2nd ed. Wayne, NJ: Clinical and 
Laboratory Standards Institute, 2016.

42.	Petersen PH, Klee GG. Influence of analytical bias and 
imprecision on the number of false positive results using 
guideline-driven medical decision limits (Reprinted from 
Clinica Chimica Acta vol 430C, pg 1–8, 2014). Clin Chim Acta 
2014;432:127–34.

43.	Fraser CG, Petersen PH. Desirable standards for laboratory tests 
if they are to fulfill medical needs. Clin Chem 1993;39:1447–53; 
discussion 53–5.

44.	Page CH, Vigoureux PE. The International Bureau of Weights and 
Measures 1875–1975. US Department of Commerce, National 
Bureau of Standards, Gaithersburg, USA, NBS Special Publica-
tion 420, May 1975, Available at: https://archive.org/details/
internationalbur 420page. Accessed: 27 July 2017.

45.	 Williams A. What can we learn from traceability in physical 
measurements? Accredit Qual Assur 2000;5:414–7.

46.	Williams A. Traceability and uncertainty – a comparison of their 
application in chemical and physical measurement. Accredit 
Qual Assur 2001;6:73–5.

47.	 Mari L, Giordani A. Modeling measurement: error and 
uncertainty. In: Boumans M, Hon G, Petersen A, editors. Error 
and uncertainty in scientific practice. London: Pickering & Chatto, 
2014:79–96.

48.	Giordani A, Mari L. Measurement, models, and uncertainty. Ieee 
T Instrum Meas 2012;61:2144–52.

49.	Psillos S. Scientific realism: how science tracks truth. London: 
Routledge, 1999.

50.	Giere RN. Explaining science: a cognitive approach. Chicago: 
University of Chicago Press, 1988.

51.	 Giere RN. Cognitive models of science. Minneapolis: University 
of Minnesota Press, 1992:xxviii:508.

52.	 Giere RN. Scientific perspectivism. Chicago: University of Chi-
cago Press, 2006:151.

53.	 Tal E. Old and new problems in philosophy of measurements. 
Philosophy Compass 2013;8:1159–73.

54.	Tal E. Measurement in Science. 2015. In: The Stanford 
Encyclopedia of Philosophy [Internet]. Available at: http://plato.

stanford.edu/archives/sum2015/entries/measurement-science. 
Accessed: 30 July 2017.

55.	 Tal E. Measurement in science. In: Zalta EN, editor. Stanford 
encyclopedia of philosophy, 2015.

56.	Kacker R, Jones AW. On use of Bayesian statistics to make 
the guide to the expression of uncertainty in measurement 
consistent. Metrologia 2003;40:235–48.

57.	 Vallverdú J. Bayesian versus frequentists. A philosophical 
debate on statistical reasoning. Heidelberg: Springer, 2016.

58.	Sanogo M, Abatih E, Saegerman C. Bayesian versus frequentist 
methods for estimating true prevalence of disease and diagnos-
tic test performance. Vet J 2014;202:204–7.

59.	 Weise K, Woger W. A Bayesian theory of measurement uncer-
tainty. Meas Sci Technol 1993;4:1–11.

60.	Lira I. The GUM revision: the Bayesian view toward the 
expression of measurement uncertainty. Eur J Physics 
2016;37:1–16.

61.	 Kyriazis GA. Contributions to the revision of the ‘Guide to the 
expression of uncertainty in measurement’. J Phys Conf Ser 
2015;575:1.

62.	Bich W. How to revise the GUM? Accredit Qual Assur 
2008;13:271–5.

63.	ISO. ISO 15189:2012 Medical laboratories – requirements for 
quality and competence. Geneva: International Standardisation 
Organisation, 2012.

64.	Haeckel R, Wosniok W, Streichert T. Optimizing the use of the 
“state-of-the-art” performance criteria. Clin Chem Lab Med 
2015;53:887–91.

65.	Haeckel R, Wosniok W. A new concept to derive permissible 
limits for analytical imprecision and bias considering diagnostic 
requirements and technical state-of-the-art. Clin Chem Lab Med 
2011;49:623–35.

66.	Farrance I, Frenkel R. Uncertainty of measurement: a review of 
the rules for calculating uncertainty components through func-
tional relationships. Clin Biochem Rev 2012;33:49–75.

67.	 Farrance I, Frenkel R. Uncertainty in measurement: a review of 
monte carlo simulation using microsoft excel for the calculation 
of uncertainties through functional relationships, including 
uncertainties in empirically derived constants. Clin Biochem Rev 
2014;35:37–61.

68.	Norheim S. Computer support simplifying uncertainty estima-
tion using patient samples. Linkoping: Linkoping University, 
2008. Available at: http://liu.diva-portal.org/smash/record.
jsf?pid=diva2:417298. Accessed: 30 July 2017.

69.	Theodorsson E. Validation and verification of measurement 
methods in clinical chemistry. Bioanalysis 2012;4:305–20.

70.	Theodorsson E, Magnusson B, Leito I. Bias in clinical chemistry. 
Bioanalysis 2014;6:2855–75.

Unauthenticated
Download Date | 8/28/17 9:11 PM

https://archive.org/details/internationalbur
https://archive.org/details/internationalbur
http://plato.stanford.edu/archives/sum2015/entries/measurement-science
http://plato.stanford.edu/archives/sum2015/entries/measurement-science
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:417298
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:417298

