AAC Accepted Manuscript Posted Online 25 September 2017 Antimicrob. Agents Chemother. doi:10.1128/AAC.01183-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

1 Version Date: 09/20/2017

2	For Submission to Antimicrobial Agents and Chemotherapy
3	
4	Emergence of Ceftolozane-Tazobactam Resistant Pseudomonas aeruginosa During Treatment
5	is Mediated by a Single AmpC Structural Mutation
6	
7	Shawn H. MacVane ^{1,2*} , Ruchi Pandey ³ , Lisa L. Steed ⁴ , Barry N. Kreiswirth ³ , Liang Chen ³
8	¹ Department of Pharmacy Services, Medical University of South Carolina, Charleston, SC, USA
9	² Division of Infectious Diseases, College of Medicine, Medical University of South Carolina, Charleston,
10	SC, USA
11	³ Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University,
12	Newark, NJ, USA
13	⁴ Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston,
14	SC, USA
15	Running title: Emergence of Ceftolozane-tazobactam resistant Pseudomonas
16	
17	*Corresponding Author:
18	Shawn H. MacVane, PharmD, BCPS,
19	150 Ashley Ave. MSC 584, Charleston, SC, USA 29425
20	Tel: 843-792-1233: Fax: 843-792-0566 Email: macyane@musc.edu

ABSTRACT (75/75 words)

22	Ceftolozane-tazobactam is a cephalosporin β -lactamase-inhibitor combination that exhibits potent <i>in</i>
23	vitro activity against Pseudomonas aeruginosa, including strains resistant to other β -lactams. Emergence
24	of ceftolozane-tazobactam resistance has rarely been described among clinical isolates of <i>P. aeruginosa</i> .
25	Here we characterized ceftolozane-tazobactam resistant P. aeruginosa strains that were recovered from
26	a patient treated with this agent for 6 weeks for a recurrent wound infection. The result showed that
27	the resistance is mediated by a single AmpC structural mutation.
28	

Accepted Manuscript Posted Online

41	Pseudomonas aeruginosa is a nosocomial pathogen associated with significant morbidity and
42	mortality (1). Ceftolozane-tazobactam is a cephalosporin β -lactamase-inhibitor combination antibiotic
43	that has better outer membrane permeability and improved stability against chromosomal AmpC eta -
44	lactamase than other β -lactam antibiotics, resulting in potent <i>in vitro</i> activity against <i>P. aeruginosa</i> ,
45	including multidrug-resistant strains (2, 3). In vitro selection for ceftolozane-tazobactam resistance in P.
46	aeruginosa requires multiple mutations leading to overexpression and structural modification in AmpC
47	(4). Emergence of <i>P. aeruginosa</i> ceftolozane-tazobactam resistance due to AmpC overexpression and
48	structural modifications was recently reported in two patients during prolonged courses of ceftolozane-
49	tazobactam, albeit at different amino acid positions than the <i>in vitro</i> selection study (5). Here we
50	investigated the mechanism(s) leading to in vivo ceftolozane-tazobactam resistance development in
51	sequential clinical <i>P. aeruginosa</i> isolates following six weeks of ceftolozane-tazobactam treatment.
52	A 75-year-old man presented to a tertiary-care hospital in South Carolina in April 2015 with left
53	neck wound dehiscence suspicious for infection. The patient had experienced recurrent wound
54	infections following resection and X-ray therapy with mixed gram-positive and gram-negative organisms
55	including Pseudomonas aeruginosa (pan-susceptible) dating back to December 2014. The patient
56	continuously received antimicrobial therapy since December 2014 due to inadequate closure of the
57	fistula including courses of vancomycin plus piperacillin-tazobactam (and subsequently meropenem),
58	followed by trimethoprim-sulfamethoxazole and ciprofloxacin.
59	An operating room (OR) wound culture in April 2015 revealed heavy growth of <i>P. aeruginosa</i>
60	(two morphotypes; PA-105A [spready] and PA-105B [round]) and scant growth of mixed gram-positive
64	even internetions to the started on the second second second second in the starting big successful in the starting

63

64	the FDA breakpoint (minimum inhibitory concentration [MIC] \leq 4/4 µg/mL)(7). All MICs were performed
65	using broth microdilution (Table 1) by ARUP Laboratories (Salt Lake City, UT). Cefepime was then
66	transitioned to ceftolozane-tazobactam 1.5g intravenous (IV) every 8 hours (q8h) and vancomycin IV
67	was continued. Therapy was planned to continue until surgery. Approximately 6 weeks later, patient
68	was taken to OR for debridement and pectoral flap closure of wound. OR cultures grew P. aeruginosa of
69	2 morphotypes (PA-147A [spready] and PA-147B [round]), methicillin-resistant Staphylococcus aureus
70	(MRSA), and Candida tropicalis. PA-147A and PA-147B were resistant (\geq 32/4 µg/mL) to ceftolozane-
71	tazobactam. Ceftolozane-tazobactam therapy was discontinued, and imipenem-cilastatin 1g IV q8h
72	(extended infusion of 3 hours) and tobramycin 7 mg/kg IV were started. Tobramycin was stopped after 8
73	weeks of therapy, and the patient remained on vancomycin, imipenem, and micafungin indefinitely.
74	Subsequent P. aeruginosa isolates recovered in March 2016 were imipenem resistant and ceftolozane-
75	tazobactam susceptible, but were not available for further testing. The patient ultimately was
76	transitioned to palliative care and passed away 8 months later, after several additional courses of
77	antibiotics.
78	Multilocus sequence typing showed that all four <i>P. aeruginosa</i> isolates were the same sequence
79	type (ST), ST-316 (https://pubmlst.org/paeruginosa/) (8, 9). PCR and Sanger sequencing of the full-
80	length β -lactamase genes (AmpC gene bla_{PDC} and bla_{OXA-50} , including the promoter region) were then
81	performed. The results showed that there is an aspartic acid to glycine substitution at Ambler amino
82	acid position 183 (G183D) in the AmpC gene (bla_{PDC}) of PA-147A and PA-147B, recovered after 42 days of
83	ceftolozane-tazobactam treatment. In comparison to PA-105A and PA-105B, PA-147A and PA-147B were
84	resistant to ceftolozane-tazobactam with \geq 3-fold increase in MIC (Table 1)(10). No mutations were
85	found in the promotor region of the mutant bla (DA 147A and DA 147P) compared with baceline
	Tound in the promoter region of the mutant bluppc (PA-147A and PA-147B) compared with baseline

lactams (6), but PA-105A and PA-105B were both susceptible to ceftolozane-tazobactam according to

87	In order to examine if the ceftolozane-tazobactam and ceftazidime-avibactam resistance in PA-
88	147A and PA-147B were due to the G183D substitution in the AmpC gene, we cloned the full-length
89	bla_{PDC} gene from PA-105A and PA-147A, along with its native promoter region (using primerPDC-F and
90	PDC-R, Table 2), into pGlow vector (Invitrogen) in E. coli TOP10. The resultant pGlow vectors carrying
91	wild-type and G183D mutation were subsequently electroporated into PA-105A (named as PA105A-WT
92	and PA105A-MT). Further susceptibility testing of the PA-105A transconjugates showed that the mutant
93	bla_{PDC} encoding the G183D variant increased the ceftolozane-tazobactam MIC \geq 6-fold compared to the
94	corresponding wild type <i>bla</i> _{PDC} isogenic strain (Table 1), providing good evidence that the gene encoding
95	the mutant bla_{PDC} is responsible for the ceftolozane-tazobactam resistance observed in the clinical
96	isolates.
97	We also investigated whether the ceftolozane-tazobactam resistance is associated with the

98 over-expression of the two β -lactamase genes by quantitative reverse transcription PCR (RT-qPCR). 99 Gene expression of *bla*PDC and *bla*OXA-50 in the four *P. aeruginosa* strains (PA-105A, PA-105B, PA-147A, 100 and PA-147B) were tested using primers listed in Table 2. RT-qPCR revealed no significantly changes of 101 bla_{PDC} expressions between ceftolozane-tazobactam susceptible and resistant isolates from the same 102 morphotypes (between PA-105A and PA-147A, or between PA-105B and PA-147B), however, the 103 expression levels of bla_{PDC} in round isolates (PA-105B and PA-147B, ~150 fold in comparison to P. 104 aeruginosa PAO1) were significantly higher than those in spready isolates (PA-105A and PA-147A, ~1.2 105 fold in comparison to PAO1). We suspect isolates of different morphotypes may have different genetic 106 signatures involving expression regulation of bla_{PDC} . However, the G183D substitution in bla_{PDC} , instead 107 of the *bla*_{PDC} high expression, primarily contributes to the ceftolozane-tazobactam resistance. No 108 differences of bla_{OXA-50} expression were observed among these four isolates (PA-105A, PA-105B, PA-109 147A, and PA-147B).

110	Interestingly, compared with PA105A-WT, PA105A-MT had 4-8 fold MIC increase for aztreonam,
111	cefepime, piperacillin-tazobactam, and ceftazidime-avibactam, but MIC decrease for imipenem (\geq 4 fold
112	doubling dilution) (Table 1), suggesting the bla_{PDC} G183D substitution also contribute to the resistance
113	changes to these β -lactams antibiotics in <i>P. aeruginosa</i> . Of note, similar increased ceftazidime-
114	avibactam resistance but restoring carbapenem susceptibility was described in Klebsiella pneumoniae,
115	due to point mutation in bla_{KPC-3} gene(11). However, the molecular mechanisms underlying the
116	multidrug resistance in PA-105B, which doesn't harbor the G183D substitution, remain unclear. Multiple
117	mechanisms, including the high bla_{PDC} expression as well as other mechanisms (efflux, porin, etc.) may
118	be involved. A further whole genome sequencing and transcriptome analysis may help to decipher the
119	molecular mechanisms of diverse resistance profile between the parent and subsequent strains, and
120	between isolates of different morphotypes (Table 1)
121	Previous studies by in vitro selection and characterization of ceftolozane-tazobactam resistant
122	mutants in <i>P. aeruginosa</i> strains associated the development of high-level resistance with structural
123	modifications in the conserved residues of AmpC (F147L, Q157R, G183D, E247K, or V356I)(4). Similar in
124	vitro studies with ceftazidime-avibactam resistant mutants in P. aeruginosa also found the G183D
125	mutation, which is less effectively inhibited by avibactam (12). However, in vivo development of
126	ceftolozane-tazobactam resistance among clinical patients has only recently been observed following
127	eight days of treatment and was mediated by AmpC overexpression and associated with mutations
128	within the AmpC Ω -loop (5). To our knowledge, the current case is the first report of clinical emergence
129	of <i>P. aeruginosa</i> ceftolozane-tazobactam resistance mediated by the G183D mutation in AmpC. More
130	importantly, we have proved this mutation is the cause of the ceftolozane-tazobactam resistance.
131	Development of resistance to ceftolozane-tazobactam occurred after several weeks of therapy. Notably,
132	our patient received ceftolozane-tazobactam 1.5 g IV every 8 hours, the dosage regimen approved for
133	complicated urinary tract and intra-abdominal infections (7). A higher

- 134 pharmacokinetic/pharmacodynamic-derived dose of 3g IV every 8 hours is currently being investigated
- 135 in nosocomial pneumonia clinical trials (13). Our finding of emergence of co-resistance to ceftazidime-
- 136 avibactam is concerning. Further studies on the implications of this mutation on the susceptibility of
- 137 other β -lactam antibiotics are warranted.

138 ACKNOWLEDGMENTS

- 139 Financial support. This work was in part supported by the following grants from the National Institute of
- 140 Allergy and Infectious Diseases (R01AI090155 to B.N.K and R21AI117338 to L.C).
- 141 Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.

Organism	PA-105A	PA-105B	PA-147A	PA-147B	PA-105A-WT (vector with wild type <i>bla</i> _{PDC})	PA-105A-MT (vector with G183D variant	
Antimicrobial Agent		Interpre	tative Criteria o	tive Criteria or MIC value (μg/mL)			
Amikacin	4 (S)	8 (S)	16 (S)	16 (S)	2 (S)	16 (S)	
Aztreonam	16 (I)	≥ 64 (R)	≥ 64 (R)	32 (R)	16 (I)	≥ 64 (R)	
Cefepime	4 (S)	32 (R)	32 (R)	32 (R)	4 (S)	32 (R)	
Ceftazidime	4 (S)	≥ 32 (R)	≥ 32 (R)	≥ 32 (R)	4 (S)	≥ 32 (R)	
Ciprofloxacin	≥ 8 (R)	≥ 8 (R)	≥8 (R)	4 (R)	≥ 8 (R)	4 (R)	
Colistin	1 (S)	1 (S)	1 (S)	1 (S)	1 (S)	1 (S)	
Gentamicin	2 (S)	4 (S)	8 (I)	8 (I)	2 (S)	8 (I)	
Imipenem	≥ 32 (R)	≥ 32 (R)	1 (S)	1 (S)	≥ 32 (R)	2 (S)	
Meropenem	8 (R)	≥ 16 (R)	8 (R)	1 (S)	8 (R)	8 (R)	
Piperacillin-tazobactam	16/4 (S)	≥ 128/4 (R)	64/4 (I)	64/4 (I)	16/4 (S)	64/4 (I)	
Tobramycin	0.5 (S)	1 (S)	2 (S)	1 (S)	1 (S)	1 (S)	
Ceftazidime-avibactam	4/4 (S)	≥ 32/4 (R)	≥ 32/4 (R)	≥32/4 (R)	4/4 (S)	≥ 32/4 (R)	
Ceftolozane-tazobactam	1/4 (S)	8/4 (I)	≥ 64/4 (R)	≥ 64/4 (R)	1/4 (S)	≥ 64/4 (R)	

143 Note: Antimicrobial susceptibility testing performed by broth microdilution. Interpretative criteria based on CLSI M100-S25 or package insert, as 144 appropriate.

145 Abbreviations: I, Intermediate; ND, not done; PA, Pseudomonas aeruginosa; R, Resistant; S, Susceptible

Table 1. Antimicrobial Susceptibility Testing Results of Clinical and Transconjugate Isolates

142

variant)

146 Table 2. Primers used for cloning and RT-PCR in this study

Primer	Sequences (5'-3')	Purpose	Size (bp)
PDC-F	CGAACCAATCTCTGCTCCAA	Clone the full-length	1,350
PDC-R	TCAGCGCTTCAGCGGCACCTTGGC	<i>bla</i> _{PDC} gene	
PDC-F(RT)	ACTCGGTGCAGAAGGACCAG	RT-qPCR	102
PDC-R(RT)	CGATGCTCGGGTTGGAATAG		
OXA50-F(RT)	GGCACCTTCGTCCTCTACGA	RT-qPCR	139
OXA50-R(RT)	ATTTAACCGCCCCTGTGGAT		
rpsL-F(RT)	TATACACCACCACGCCGAAA	Internal control for	103
rpsL-R(RT)	CCTTCACCACCGATGTACGA	RT-qPCR	

147 References

148	1.	Thaden JT, Park LP, Maskarinec SA, Ruffin F, Fowler VG, Jr., van Duin D. 2017. Increased
149		mortality associated with bloodstream infections caused by Pseudomonas aeruginosa as
150		compared to other bacteria: Results of a 13-year prospective cohort study. Antimicrob Agents
151		Chemother doi:10.1128/AAC.02671-16.
152	2.	van Duin D, Bonomo RA. 2016. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-
153		generation beta-Lactam/beta-Lactamase Inhibitor Combinations. Clin Infect Dis 63:234-41.
154	3.	Shortridge D, Castanheira M, Pfaller MA, Flamm RK. 2017. Ceftolozane-tazobactam activity
155		against Pseudomonas aeruginosa clinical isolates from US hospitals: Report from an
156		antimicrobial surveillance program (PACTS, 2012-2015), Antimicrobial Agents and
157		Chemotherapy doi:10.1128/aac.00465-17.
158	4.	Cabot G. Bruchmann S. Mulet X. Zamorano L. Mova B. Juan C. Haussler S. Oliver A. 2014.
159		Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple
160		mutations leading to overexpression and structural modification of AmpC Antimicrob Agents
161		Chemother 58:3091-9
162	5	Haidar GP N L·Shields R K·Snyder D·Cheng S·Potoski B A·Doi Y·Hao B·Press E G·
163	0.	Cooper, V. S.: Clancy, C. L.: Nguyen, M. H. 2017. Ceftolozane-tazobactam for the treatment of
164		multidrug-resistant Pseudomonas aeruginosa infections: Clinical effectiveness and evolution of
165		resistance. Clin Infect Dis doi:https://doi.org/10.1093/cid/cix182.
166	6.	Anonymous, 2015, Performance standards for antimicrobial susceptibility testing: Twenty-fifth
167	0.	informational supplement (M100-S25) Clinical and Laboratory Standards Institute Wayne PA
168	7.	Anonymous, 2016, Zerbaxa Package Insert, Merck & Co., Inc.
169		https://www.merck.com/product/usa/pi_circulars/z/zerbaxa/zerbaxa_pi.pdf. Accessed May 11.
170		2017.
171	8.	Larsen MV. Cosentino S. Rasmussen S. Friis C. Hasman H. Marvig RL. Jelsbak L. Sicheritz-Ponten
172	-	T. Usserv DW. Aarestrup FM. Lund O. 2012. Multilocus sequence typing of total-genome-
173		sequenced bacteria. J Clin Microbiol 50:1355-61.
174	9.	Jolley KA, Maiden MC. 2010. BIGSdb: Scalable analysis of bacterial genome variation at the
175	-	population level. BMC Bioinformatics 11:595.
176	10.	Anonymous, 2017. Avycaz Package Insert, Allergan USA, Inc.,
177		https://www.allergan.com/assets/pdf/avycaz_pi. Accessed May 11, 2017.
178	11.	Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN,
179		Nguyen MH, Clancy CJ. 2016. Emergence of ceftazidime-avibactam resistance due to plasmid-
180		borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae
181		infections. Antimicrobial Agents and Chemotherapy doi:10.1128/aac.02097-16.
182	12.	Lahiri SD, Walkup GK, Whiteaker JD, Palmer T, McCormack K, Tanudra MA, Nash TJ, Thresher J,
183		Johnstone MR, Hajec L, Livchak S, McLaughlin RE, Alm RA. 2015. Selection and molecular
184		characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains
185		containing derepressed AmpC. J Antimicrob Chemother 70:1650-8.
186	13.	Anonymous. https://ClinicalTrials.gov/show/NCT02070757. Safety and Efficacy Study of
187		Ceftolozane/Tazobactam to Treat Ventilated Nosocomial Pneumonia (MK-7625A-008).
188		

Antimicrobial Agents and Chemotherapy

AAC