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ABSTRACT  23 

Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of 24 

outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the 25 

spotlight as an infection of global public health concern. In this review, we discuss the history 26 

and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in 27 

the Western Hemisphere, newly ascribed complications of ZIKV infection including Guillain-28 

Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and 29 

the prospects for the development of antiviral agents and vaccines. 30 

  31 

Zika virus: history and epidemiology 32 

Zika virus (ZIKV) is a member of the Flavivirus genus of the Flaviviridae family, which 33 

includes other globally relevant human pathogens such as dengue (DENV), yellow fever (YFV), 34 

West Nile (WNV), Japanese encephalitis (JEV) and tick-borne encephalitis (TBEV) viruses (1, 35 

2). ZIKV is an enveloped virus with an approximately 10.7 kilobase positive-sense RNA 36 

genome. Similar to other flaviviruses, the ZIKV genome encodes a single polyprotein that is 37 

cleaved post-translationally by host and viral proteases into three structural proteins (capsid (C), 38 

pre-membrane (prM), and envelope (E)) and seven non-structural proteins (NS1, NS2A, NS2B, 39 

NS3, NS4A NS4B, and NS5) (3, 4). C binds to the viral RNA to form a nucleocapsid, prM 40 

prevents premature fusion with host membranes, and E mediates cellular attachment, entry, 41 

and fusion (5). The viral nonstructural proteins regulate viral transcription and replication and 42 

also attenuate host antiviral responses (1, 6, 7). ZIKV is a member of the Spondweni group 43 

within the mosquito-borne clade of flaviviruses (Figure 1) and is closely related to the four 44 

serotypes of DENV with approximately 43% amino acid identity across the viral polyprotein as 45 

well as in the ectodomain of E. 46 

ZIKV was first isolated in 1947 from a febrile sentinel rhesus monkey in the Zika forest, a 47 

research station of the East African Virus Research Institute (now the Uganda Virus Research 48 
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Institute) in Entebbe, Uganda (8, 9). The virus was isolated subsequently from Aedes africanus 49 

mosquitoes in the same forest (9-11), and multiple monkey species in the Zika forest were 50 

found to be seropositive for ZIKV (11). Small mammals in the Zika forest (including squirrels, 51 

tree rats, giant pouched rats, and civets) did not show serological evidence of ZIKV infection, 52 

consistent with a model where primates (both humans and monkeys) are the primary vertebrate 53 

hosts for ZIKV (10). Multiple species of Aedes mosquitoes contribute to enzootic maintenance 54 

of ZIKV, but likely only a subset of these transmit the virus to humans (12, 13). There is 55 

evidence of high rates of ZIKV seroprevalence in Africa and Asia (9, 14-17), although the 56 

specificity of such assays is uncertain, given the significant serological cross-reactivity between 57 

ZIKV and other flaviviruses (see below). In the decades following its discovery, ZIKV was 58 

isolated from human patients sporadically during outbreaks in Africa and Southeast Asia (15, 59 

18), but remained obscure due to the fairly benign nature of the infection (generally a self-60 

limiting febrile illness, see below).  61 

ZIKV came to global attention in 2007, when it caused of an explosive outbreak in 62 

Micronesia (18-21). On the island of Yap, it is estimated that approximately 75% of the 63 

population became infected during a 4-month period (19). In the ensuing years, ZIKV spread 64 

throughout Oceania (22-25) and then was detected in Brazil in early 2015 (26, 27). Although the 65 

precise means by which ZIKV was introduced to the Western Hemisphere is unknown, the 66 

presumption is that the virus came to Brazil from Polynesia via a viremic traveler or an infected 67 

mosquito (2, 26, 28, 29). The Aedes aegypti mosquito, which can transmit ZIKV, is abundant in 68 

Brazil and autochthonous transmission was established. The outbreak initially was concentrated 69 

in Northeastern Brazil. However, the virus rapidly spread throughout Latin America and the 70 

Caribbean, such that within one year most countries in the region have reported local 71 

transmission (30-32). Further spread of the virus is anticipated and imported cases already have 72 

been reported in the United States, Europe, and elsewhere in travelers returning from Latin 73 

America and the Caribbean during the current outbreak (30, 33-35). The rate at which ZIKV has 74 
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spread through Latin America and the Caribbean since its introduction appears comparable to 75 

chikungunya virus (CHIKV) after its introduction to the Western Hemisphere in late 2013, 76 

suggesting that it reflects the abundance and competence of the Aedes aegypti mosquitoes that 77 

are used as vectors by both viruses, as well as the availability of a susceptible host population 78 

(36). ZIKV genome sequences from Polynesia and South America are highly similar (2, 26, 29) 79 

(approximately 99% nucleotide identity across the viral genome), but there are genetic 80 

differences, for example 6 amino acid changes between the H/PF/2013 strain from French 81 

Polynesia and the SPH2015 strain from Brazil (Genbank accession: KJ776791.1 and 82 

KU321639.1) (37). Future studies are needed to determine whether such changes impact 83 

disease pathogenesis, tropism, or vector competence. The ability of changes in viral sequence 84 

to impact the epidemic potential of arboviruses was seen previously with CHIKV, where a small 85 

number of mutations, including a A226V change in the E1 glycoprotein, enabled the virus to use 86 

Aedes albopictus mosquitoes as vectors, which have an expanded geographic range compared 87 

to Aedes aegypti, facilitating epidemic spread into new areas (37-39). 88 

 89 

Modes of transmission 90 

Vector-borne transmission. ZIKV is a mosquito-transmitted virus (Figure 2). ZIKV has 91 

been isolated from many species of Aedes mosquito, but only a subset of these are competent 92 

vectors for transmission (including Ae. aegypti, Ae. albopictus, Ae. hensilii, and Ae. 93 

polynesiensis) (9-13, 18, 21, 40-42). Aedes aegypti is thought to be the principal vector 94 

spreading ZIKV during the current outbreak in Latin America and the Caribbean, likely due to 95 

the urban abundance and anthropophillic nature of this mosquito (43). Monkeys are presumed 96 

to serve as reservoir hosts for ZIKV, although the primary species has not been identified (11, 97 

18). It is unclear whether ZIKV will become endemic in New World monkeys and establish a 98 

sylvatic transmission cycle in Latin America analogous to YFV, or be maintained exclusively 99 

through urban transmission cycles with no New World sylvatic cycle, similar to DENV (44). 100 
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Humans are amplifying hosts for ZIKV and urban cycles of transmission between humans and 101 

mosquitoes sustain and cause epidemics. Indeed, the island of Yap in Micronesia experienced 102 

an extensive ZIKV outbreak yet there are no non-human primates on this island (19). There 103 

currently is no evidence that animals other than humans and non-human primates serve as 104 

amplifying hosts for ZIKV, suggesting a mode of transmission similar to DENV, YFV, and 105 

CHIKV. While mosquito-borne transmission clearly is the main cause of ZIKV outbreaks, other 106 

modes of transmission have been reported. 107 

Blood-borne transmission. As is the case for other blood-borne infections, a ZIKV 108 

viremic donor could potentially contaminate the blood supply (45, 46) and cases of ZIKV 109 

transmission through transfusions of donated blood have been reported in Brazil, although not 110 

yet published. In many areas, including the United States, Canada, and Europe, the blood 111 

supply already is screened by nucleic acid amplification tests to detect WNV (47-50). The same 112 

approach, once a screening test becomes available, could be used to detect ZIKV, and plans 113 

exist in several countries to screen the blood supply for ZIKV or to defer blood donation from 114 

those who have travelled to countries where ZIKV is circulating. In the absence of an approved 115 

diagnostic assay to detect ZIKV contamination, strategies are available to inactivate infectious 116 

agents in the blood supply (46, 51). 117 

Sexual transmission. There is evidence of sexual transmission of ZIKV (34, 52, 53), and 118 

ZIKV RNA has been detected in semen (54, 55). To date, all reported sexually transmitted 119 

cases of ZIKV infection have been from infected men to their female partners. Although some of 120 

these cases were accompanied by hematospermia, infectious ZIKV was detectable in semen 121 

even after viremia had cleared (undetectable ZIKV RNA in serum), arguing against blood-borne 122 

transmission (54). Moreover, while other sexually transmitted infections cause hematospermia 123 

(56), this has not been a common presentation of ZIKV infection, nor has it been evident in all 124 

cases of sexually transmitted ZIKV (34). Recent reports of infectious ZIKV in urine, along with 125 

the detection of ZIKV RNA in urine even after viremia has cleared (57), could be consistent with 126 



 6

ZIKV replication in urogenital tissues. ZIKV RNA has been detected in saliva (58) and infectious 127 

ZIKV in saliva recently was reported. Due to the highly correlated nature of behaviors, sexual 128 

and salivary transmission can be difficult to distinguish. Indeed, Kaposi’s sarcoma-associated 129 

herpesvirus initially was thought to be sexually transmitted, but subsequent findings indicated 130 

that the primary mode of transmission was through saliva (59). Indeed, pigs can develop high 131 

viral loads in the tonsils and transmit JEV through oronasal secretions, which demonstrates this 132 

as a possible transmission route for flaviviruses (60). Although sexual transmission is unlikely to 133 

be a major cause of ZIKV outbreaks, the presence of virus in semen warrants investigation, 134 

especially given recent evidence that Ebola virus RNA can be detected in the semen of 135 

survivors for months after the acute infection has cleared. Similarly, ZIKV RNA was detected in 136 

semen 62 days after the onset of febrile symptoms (55). The immune privileged nature of the 137 

testes may allow ZIKV to persist in this tissue. Such reservoirs have the potential to initiate new 138 

transmission cycles from seemingly healthy individuals (61, 62). The growing number of 139 

imported ZIKV cases in areas of the United States and Europe where local mosquito 140 

transmission is less likely provides an opportunity to detect and determine the significance of 141 

alternative transmission mechanisms (34).  142 

Maternal transmission. ZIKV RNA has been detected in breast milk (63). As this route of 143 

transmission has been documented for other flaviviruses (64-66), ZIKV-infected mothers may 144 

be able to pass the virus to nursing children. However, it is not known whether infectious ZIKV is 145 

present in breast milk nor its possible duration relative to acute infection, and ZIKV-infected 146 

mothers are still encouraged to breastfeed their infants (67). Perinatal transmission of ZIKV was 147 

documented in French Polynesia (63), but it is unknown whether this represented transmission 148 

in breast milk, blood-borne transmission during delivery, or in utero transmission.  149 

The question of in utero transmission has gained urgency as the emergence of ZIKV in 150 

Brazil has coincided with an alarming increase in the number of cases of microcephaly, with the 151 

Northeastern states reporting >4,000 cases over approximately four months, a more than 20-152 
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fold increase from prior years (68-71). Microcephaly is a congenital abnormality in which the 153 

fetal brain is underdeveloped (72, 73). There is not a standard definition of microcephaly, as 154 

definitions range from a newborn head circumference ≤32 or 33 cm, or ≥2 or 3 standard 155 

deviations below the mean for gestational age (69). Many factors during pregnancy can cause 156 

microcephaly, including other viral infections (e.g., human cytomegalovirus, rubella virus, and 157 

varicella-zoster virus), exposure to toxins (e.g., drugs or alcohol), and genetic mutations. 158 

Microcephaly can be asymmetric, meaning a small head on an otherwise normally proportioned 159 

body, or symmetric, meaning that the small head is proportional to a small overall body size; the 160 

type of microcephaly can be characteristic of its etiology. Microcephaly can be diagnosed by 161 

prenatal ultrasound, but generally not until the late second trimester and many cases are not 162 

evident until after birth. The long-term effects of microcephaly can vary widely, from virtually no 163 

defects to cognitive deficits and severe physical disability (73). 164 

It is important to note that the majority of the microcephaly cases reported during the 165 

current outbreak have yet to be confirmed or linked directly to ZIKV; in ongoing follow-up 166 

studies, approximately one third of reported microcephaly cases had been corroborated, and 167 

presumably some of these will be attributable to causes other than ZIKV infection (68, 70, 71). 168 

Further complicating the analysis, the case definition for microcephaly has changed over the 169 

course of the current outbreak: in December 2015 the Brazilian Ministry of Health adopted a 170 

newborn head circumference ≤32 cm as the case definition, compared to the less stringent ≤33 171 

cm cutoff used previously (69). Clearly, better data are required to assess the potential 172 

connection between ZIKV infection and microcephaly; epidemiological studies, including case-173 

control and prospective cohort studies, are underway and should bring clarity to this question in 174 

time. Nonetheless, accumulating evidence strongly suggests a causal role for ZIKV in the 175 

development of microcephaly. In addition to the timing and geographic distribution of 176 

microcephaly cases relative to ZIKV infections, data supporting trans-placental infection 177 

includes the following: (i) detection of ZIKV RNA and sequencing of full-length viral genome 178 
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from the amniotic fluid of fetuses diagnosed with microcephaly by ultrasound in mothers who 179 

reported previous ZIKV infection but were not viremic at the time of amniocentesis; (ii) detection 180 

of ZIKV RNA and/or antigen in the tissues of three microcephalic infants who died shortly after 181 

birth; (iii) detection of ZIKV RNA in the placenta from a microcephalic fetus after miscarriage; 182 

(iv) Partial sequence of ZIKV genome and viral antigen detection in four fetal brain tissue 183 

samples recovered from miscarriages and neonatal death; (v) sequencing of full-length ZIKV 184 

RNA genome and visualization of ZIKV-like particles by electron microscopy in the fetal brain 185 

from a terminated pregnancy (74-81). A recent report of anti-ZIKV IgM in the cerebral spinal 186 

fluid of 12 infants with microcephaly also supports in utero infection with ZIKV.  187 

Although other viruses can cross the placenta and cause microcephaly in humans 188 

and/or animals, this presentation has never been associated previously with flaviviruses (82-86). 189 

In utero infection with WNV has been studied, with no clear evidence of an association with 190 

microcephaly (87-89). Furthermore, there are an estimated >390 million DENV infections 191 

annually (including ~25 million estimated in Brazil (90)), so even a very low rate of DENV-192 

induced microcephaly would have been observed. While the mechanisms by which ZIKV may 193 

cause microcephaly are unknown, the preliminary evidence and the severity of the disease has 194 

prompted the United States Centers for Disease Control and Prevention (CDC), Public Health 195 

Agency of Canada, Australian Department of Foreign Affairs and Trade, and Public Health 196 

England, among others, to recommend that women who are pregnant or planning to become 197 

pregnant avoid travel to areas where ZIKV is circulating (in effect, nearly all of Latin America 198 

and the Caribbean, among other locations) (74, 75, 80, 91, 92). Such travel advisories have 199 

significant economic impact on the affected countries, especially with the approach of the 2016 200 

Olympic Games in Rio de Janeiro. Furthermore, in response to the potential for sexual 201 

transmission of ZIKV, CDC has cautioned pregnant women against unprotected sex with 202 

partners who have potential ZIKV exposure (34, 91, 93). Remarkably, health officials in several 203 

Latin American and Caribbean countries have recommended that women postpone pregnancy 204 
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in response to the ZIKV outbreak. In the United States, pregnant women have become infected 205 

while traveling to areas with active ZIKV transmission, or by sexual contact with ZIKV-infected 206 

male partners. The outcomes of these ZIKV-exposed pregnancies have been variable, including 207 

early pregnancy loss, elective termination, delivery of an infant with severe microcephaly, and 208 

seemingly unaffected infants (80). Many unanswered questions remain about in utero 209 

transmission of ZIKV infection and the development of microcephaly, as discussed further 210 

below. 211 

 212 

Clinical features of Zika virus infection 213 

 Historically, ZIKV infection caused a variable clinical syndrome in humans ranging from 214 

no signs or symptoms to an influenza-like viral illness that appeared similar in the early stages 215 

to those caused by other epidemic arboviruses including DENV and CHIKV. For ZIKV, 216 

approximately 20 percent of individuals who become infected progress to a clinically apparent 217 

febrile illness, although hospitalization is rare (18, 19). Signs and symptoms associated with 218 

ZIKV infection occur on average within 3 to 7 days of mosquito inoculation and include an 219 

abrupt onset of fever accompanied by headache, arthralgia, myalgia, conjunctivitis, vomiting, 220 

fatigue, and/or maculopapular rash (94) (Figure 2). For many years, ZIKV infection was 221 

considered self-limiting with no long-term sequelae, but more severe complications have 222 

become apparent during the more recent ZIKV outbreaks in the South Pacific and Latin 223 

America, possibly because the greater number of infections has facilitated detection and 224 

reporting of rare outcomes (though other factors may also contribute to increased ZIKV 225 

pathogenesis). Although ZIKV infection has not been reported to cause the plasma leakage and 226 

hemorrhage associated with severe DENV disease, ZIKV has caused thrombocytopenia and 227 

hematospermia (52, 54, 95). There are no reported fatal cases of ZIKV in otherwise healthy 228 

people. However, ZIKV-associated mortality has been described in patients with co-morbidities 229 
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including sickle cell disease (96), and congenital ZIKV infection and post-ZIKV Guillain-Barré 230 

syndrome (GBS) can be fatal.  231 

During the 2013-2014 ZIKV outbreak in French Polynesia, neurological disorders were 232 

linked to ZIKV infection, as there was an increase in the incidence of GBS, a post-infection 233 

autoimmune neuropathy that can result in weakness, paralysis, and death (92, 97-99). A case-234 

control study of the outbreak found that GBS patients were more likely to have evidence of past 235 

ZIKV infection compared to controls, with 0.24 cases of GBS per 1,000 ZIKV infections (98). 236 

Patients with post-ZIKV GBS had atypically low levels of anti-ganglioside antibodies compared 237 

to patients with GBS of other etiologies, suggesting that ZIKV may induce GBS by different 238 

mechanisms than other causes (98). Cases of a diffuse demyelinating disorder consistent with 239 

GBS that are temporally associated ZIKV infection also have been reported in Brazil,  El 240 

Salvador, Colombia, and Venezuela (75, 92). More studies are needed to understand the 241 

linkage between ZIKV infection and GBS, particularly the pathophysiological mechanisms at 242 

play. Possible mechanisms include (i) immunopathology due to viral antigen mimicry with a host 243 

protein; (ii) virus sequence changes resulting in enhanced tropism for the peripheral nervous 244 

system; and (iii) an association with prior or concurrent immune responses to DENV (97-100).  245 

Most concerning is the sharp increase in cases of microcephaly in newborns in the 246 

Northeastern region of Brazil that is associated with ZIKV infection of pregnant women (101). 247 

Several cases of presumed intrauterine ZIKV infection resulted in coarse cerebral calcifications 248 

in different brain regions of newborn infants or fetuses in utero (76). A recent study of a fetus 249 

with microcephaly recovered after elective termination at 32 weeks of gestation also revealed 250 

numerous calcifications in the cortical and subcortical regions of the frontal, parietal, and 251 

occipital lobes of the cerebral cortex (77).  Hydrops fetalis and hydranencephaly were noted in a 252 

fetus with microcephaly, which was followed by fetal demise (81). The reported microcephaly 253 

cases may represent only the severe end of the spectrum, such that newborns with less severe 254 

infection could still have long-term cognitive or functional sequelae (76). Indeed, ocular findings 255 
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in infants with presumed ZIKV-associated microcephaly were described recently. Approximately 256 

30% of children with suspected ZIKV infection in utero had evidence of significant retinal and 257 

optic nerve abnormalities (102).  258 

 259 

Pathogenesis of ZIKV infection. 260 

 Although no recent ZIKV pathogenesis studies have been performed to explain the 261 

possible microcephaly observed in Brazil, experiments in mice that were performed 40 and 60 262 

years ago suggest that under certain circumstances ZIKV has a tropism for cells in the brain. 263 

The original ZIKV strain (MR 766) was isolated by George Dick and colleagues in 1947 from the 264 

brain of a 5 to 6 week-old Swiss mouse after it was inoculated via an intracerebral route with the 265 

serum of a febrile sentinel rhesus macaque (9). The same group showed subsequently that 266 

passaged ZIKV strains caused signs of central nervous system (CNS) disease including motor 267 

weakness and paralysis after intracerebral inoculation in mice of different ages (8). Mice under 268 

seven days of age were susceptible to lethal ZIKV infection when inoculated by an 269 

intraperitoneal route whereas adult mice were less sensitive (103). In mice, the pathological 270 

manifestations of disease were restricted to CNS tissues. Neuronal degeneration and cellular 271 

infiltration were observed in regions of the spinal cord and brain with evidence of Cowdry type A 272 

inclusion bodies (8), which also are described after neuronal infection by herpesviruses. 273 

Evidence of neuronal injury also was observed in the pathological evaluation of a human fetus 274 

infected in utero with ZIKV. In this case, diffuse astrogliosis and activation of microglia were 275 

present, and damage extended to the brain stem and spinal cord with Wallerian degeneration of 276 

the descending corticospinal tracts noted (77).  Beyond the CNS, no other tissue supported 277 

significant ZIKV infection including the kidney, lung, spleen, and liver. In comparison, other 278 

animals, including cotton rats, guinea pigs, rabbits, and rhesus monkeys did not develop CNS 279 

disease, even after intracerebral inoculation (8). More recent studies using a ZIKV isolate from 280 

French Polynesia demonstrated infection of human keratinocytes, dermal fibroblasts, and skin 281 
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biopsies, consistent with the skin being the initial site of ZIKV replication after mosquito 282 

inoculation, similar to WNV and DENV (104-107). Similar to DENV, ZIKV can use DC-SIGN and 283 

the TAM receptors Axl and Tyro3 as attachment factors (104). Also similar to other flaviviruses, 284 

ZIKV infected human dendritic cells in culture and was restricted by the antiviral effects of type I 285 

and type II interferon (104). 286 

Some ZIKV strains have one N-linked glycosylation site in their envelope (E) protein 287 

(N154), whereas others lack predicted glycosylation sites (108). This pattern contrasts with 288 

DENV, which has two N-linked glycosylation sites (N67 and N154), and is similar to the E 289 

proteins of more distantly related flaviviruses including WNV and TBEV (N154) (109-111). 290 

Although N-linked glycosylation on E is associated with enhanced mosquito transmission and/or 291 

increased virulence in mammals for some flaviviruses including WNV, TBEV, and others (112-292 

118), it remains unknown whether differential glycosylation between ZIKV strains determines or 293 

even correlates with pathogenicity. 294 

 295 

Diagnosis of ZIKV infection  296 

 Because ZIKV causes a non-specific influenza-like illness without pathognomonic 297 

features, it is challenging clinically to distinguish it from other viral illnesses. This is especially 298 

true because ZIKV co-circulates and shares mosquito vectors with DENV and CHIKV which 299 

present similarly with fever, rash, arthralgia, and myalgia (25, 119). In addition to co-circulation, 300 

recent reports have described co-infection of multiple arboviruses including ZIKV and DENV 301 

(24).  302 

 Given the challenges in clinical diagnosis, a laboratory-based diagnosis of ZIKV is the 303 

gold standard (120). Beyond direct virus isolation, which can be difficult outside of highly 304 

specialized laboratories, the most definitive current diagnostic tool is a RT-PCR-based assay 305 

that detects ZIKV RNA and can distinguish it from DENV, CHIKV, and other viral infections 306 

(120). Because ZIKV viremia in humans lasts for a short duration of 3 to 5 days (20, 121), 307 
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serum RT-PCR assays, while highly specific, have low sensitivity rates. Urine and saliva 308 

samples may have greater utility for diagnosing ZIKV infection by RT-PCR, as viral RNA is 309 

detectable at a higher load and with a longer duration in these body fluids than in serum (57, 310 

58). In one study in French Polynesia, 19.2% of tests were positive for ZIKV RNA in saliva while 311 

negative in blood. The use of saliva sample increased the rate of molecular detection of ZIKV 312 

and was of particular interest in groups (e.g., children and newborns) where blood was difficult 313 

to collect (58). Viral detection in urine and saliva is not unique to ZIKV, as DENV RNA has been 314 

detected in both fluids, whereas infectious WNV and WNV RNA have been detected in urine 315 

(122-124). 316 

Serology-based diagnosis of ZIKV infection, which is critical to surveillance, 317 

epidemiologic analyses, and acute diagnoses, poses a challenge even to experienced 318 

laboratory personnel due to the extensive cross-reactivity of antibodies against related 319 

flaviviruses that are derived from natural infection or vaccination (e.g., YFV, DENV, or JEV) (19, 320 

20, 120). As an example, ZIKV-infected patients can be positive in an IgM assay for DENV, 321 

particularly if ZIKV occurs as a secondary flavivirus infection. Cross-reactivity was observed 322 

more frequently with DENV than with YFV, JEV, or WNV, although further studies are needed 323 

as small numbers of samples were tested. In comparison, if ZIKV is the first flavivirus 324 

encountered, the extent of cross-reactivity is less (20). Anti-ZIKV IgM was detectable as early as 325 

3 days after onset of illness with most having it present by day 8. Neutralizing antibody 326 

developed as early as 5 days after illness onset but again but may still yield substantial cross-327 

reactivity in the setting of prior flavivirus infection or vaccination. The use of paired acute and 328 

convalescent sera and a greater than 4-fold rise in ZIKV antibody titers specifically may 329 

increase the accuracy of serological testing. 330 

Thus, if ZIKV epidemics occur in populations with DENV or other flavivirus vaccine or 331 

natural immunity, extensive cross-reactivity in the IgM and neutralization assays can occur, 332 

which could lead to an incorrect diagnosis. This is particularly problematic as ZIKV epidemics 333 
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spread through Latin America and the Caribbean, where DENV prevalence is high. Ideally, a 334 

serological assay that minimizes cross-reactivity of other flaviviruses is needed to increase the 335 

specificity of IgM and IgG assays. Based on published studies with related flaviviruses (125-336 

127), the development of diagnostic assays with ZIKV NS1 proteins or ZIKV E proteins and 337 

subviral particles encoding mutations in the highly cross-reactive fusion loop in domain II might 338 

enhance the specificity of serological tests substantially.   339 

 340 

Unanswered questions 341 

In utero transmission and teratogenic effects. While the introduction of a pathogen into a 342 

new environment often brings epidemiological and diagnostic challenges, at the outset of the 343 

ZIKV outbreak in Brazil, there was no reason to expect a unique presentation; indeed, Zika 344 

fever is typically milder than dengue fever. The association between ZIKV and microcephaly 345 

was unexpected, as this presentation has not been associated with flaviviruses, and congenital 346 

abnormalities are not characteristic of flavivirus infection. Accumulating evidence indicates a 347 

role for maternal ZIKV infection as an explanation for the increase in microcephaly cases in 348 

Brazil, although further assessment of reported and historical cases is necessary to determine 349 

the magnitude of the increase and the attack rate (68, 70, 71). Many questions remain regarding 350 

the mechanisms by which ZIKV might cause congenital defects, including microcephaly. The 351 

simplest mechanism would be an inherent ability of ZIKV to cross the placenta, followed by 352 

direct infection of nervous tissue in the developing fetus. This mechanism is supported by the 353 

detection of ZIKV RNA, complete genomes, antigen, and viral particles in fetal tissues, placenta, 354 

and amniotic fluid from pregnancies with microcephaly (74, 76-78, 80, 81, 92), and prior studies 355 

in mice suggesting a tropism for central nervous system tissues (8). If ZIKV is neurotropic and 356 

neurovirulent in the developing fetus, it seems unlikely to manifest only as microcephaly. While 357 

microcephaly may be the most apparent congenital abnormality from ZIKV infection, it remains 358 

possible that the virus can cause a spectrum of neurological effects, some of which may not be 359 
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evident for months or years. The association between ZIKV and microcephaly also could be 360 

because of its introduction into a ZIKV-naïve population, or alternatively into a population with 361 

unique patterns of flavivirus immunity, with prior immunity to DENV or other flaviviruses 362 

modulating ZIKV pathogenesis.  363 

As the placenta generally is an effective barrier in preventing microorganisms in the 364 

maternal circulation from accessing the developing fetus, it will be important to determine what 365 

mechanisms ZIKV uses to circumvent this barrier. For example, can ZIKV infect placental 366 

trophoblast cells directly, or does it employ some other method to access the fetal 367 

compartment? For other congenital infections, the risk of fetal infection varies at different stages 368 

of pregnancy (82, 83), and the most extensively described cases of ZIKV-associated 369 

microcephaly have all involved infection during the first trimester (76-78, 80). It will be important 370 

to determine the temporal risk of congenital ZIKV infection, in order to make informed 371 

recommendations to pregnant women about the risks of exposure to ZIKV (74, 91). 372 

A growing body of evidence indicates that ZIKV can cross the placenta, infect the fetus, 373 

and damage the developing brain (74, 76-80, 92). However, demonstrating a direct causal role 374 

for congenital ZIKV infection in the development of microcephaly will require more extensive 375 

clinical and epidemiological studies, many of which are now in progress. The existing data do 376 

not demonstrate that ZIKV is sufficient to cause microcephaly, and other factors may potentiate 377 

the teratogenic effects of ZIKV, including co-infections, environmental factors, viral strain 378 

differences, or host genetics. It is noteworthy that to date, ZIKV-associated microcephaly has 379 

been observed only in Brazil, and not in previous outbreaks or in other countries. This may 380 

reflect the large number of ZIKV infections in Brazil (>1.5 million estimated) and the timing of the 381 

outbreak, with Brazil experiencing the earliest effects. However, if microcephaly remains 382 

exclusive to women in Brazil or who were infected with the virus while travelling there, it will be 383 

important to consider co-factors that may impact in utero infection by ZIKV. 384 
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Interactions between ZIKV and DENV. One of the characteristic features of DENV 385 

pathogenesis is that while infection with one serotype provides durable immunity to that same 386 

serotype, antibodies to one DENV serotype can exacerbate infection with different serotypes via 387 

antibody-dependent enhancement (ADE) (128-130). ADE occurs when cross-reactive non-388 

neutralizing antibodies bind to a heterologous DENV serotype. Antibody-opsonized but non-389 

neutralized virus can infect myeloid cells (e.g., monocytes or macrophages) expressing Fc-390 

gamma receptors at a higher rate, allowing for enhanced infection and yield. Because of this, 391 

secondary DENV infections (or primary infections in infants with circulating maternal antibodies) 392 

can produce severe disease manifestations, including plasma leakage, hemorrhage, and 393 

circulatory collapse. ADE can be demonstrated for many flaviviruses in cell culture, but the 394 

phenomenon appears to be biologically relevant only in the context of DENV, possibly due to 395 

the degree of antigenic relatedness between different DENV serotypes or because of the unique 396 

biology of the DENV NS1 protein (131, 132). Given the relatedness between DENV and ZIKV, 397 

and the high cross-reactivity demonstrated in serological assays, ADE between DENV and ZIKV 398 

and altered disease pathogenesis warrants further evaluation. Recent outbreaks of ZIKV have 399 

been associated with more severe disease than historical ones. While explanations for this 400 

include changes in the virus, and an enhanced ability to detect rare presentations in larger 401 

outbreaks, one feature that distinguishes the most recent ZIKV outbreaks is that they occurred 402 

in regions of DENV hyperendemicity, where multiple strains of DENV co-circulate and most 403 

people have been infected previously by one or more DENV serotypes. This raises the 404 

possibility that ZIKV infection in DENV immune individuals could result in more severe disease 405 

presentations. While the natural history of recent DENV outbreaks has been of ZIKV 406 

introduction into regions with high DENV prevalence, as ZIKV becomes endemic in the Western 407 

Hemisphere it also will be important to monitor reciprocally how ZIKV immunity impacts DENV 408 

pathogenesis. If prior DENV immunity impacts ZIKV pathogenesis, we might expect an even 409 
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greater burden of ZIKV disease if outbreaks emerge in areas of Southeast Asia where the 410 

burden of DENV infection is even greater than in Latin America (90). 411 

Vaccine development. Successful vaccination programs have reduced the global health 412 

burden of many flavivirus infections. More than 500 million doses of vaccine to prevent YFV 413 

infection have been administered since its development in 1937, and effective vaccines have 414 

blunted the impact of JEV and TBEV. Recently, after decades of study, the first live-attenuated 415 

tetravalent DENV vaccine (Dengvaxia®) completed phase III human trials and is being deployed 416 

in Brazil, the Philippines, and Mexico.  417 

As no ZIKV vaccines have been tested even at the pre-clinical stage, we are likely years 418 

away from introduction of a ZIKV vaccine. It is expected that at least some groups with existing 419 

flavivirus vaccine platforms (e.g., chimeric live attenuated strains, passaged or genetically 420 

engineered live attenuated strains, E protein subunit, subviral particles, inactivated virions, or 421 

DNA plasmid) will apply these strategies towards ZIKV vaccine development in an expedited 422 

manner. A major question remains as to whether it will be easy or difficult to generate an 423 

immunogenic and safe vaccine against ZIKV. The issues related to this question include the 424 

following: (a) Strain diversity. Given the relatively low variation between ZIKV strains (2, 26, 425 

29, 108) (approximately 94% amino acid identity across the viral genome), and lack of existence 426 

of different genotypes or serotypes, it is plausible that an effective vaccine against one strain will 427 

function broadly against all circulating ZIKV strains; (b) Effect of pre-existing flavivirus 428 

immunity on ZIKV vaccine responses. ZIKV outbreaks are occurring in areas with high 429 

seroprevalence rates for DENV infection and vaccination with YFV. Thus, at least some fraction 430 

of candidates for ZIKV vaccines will have pre-existing cross-reactive antibodies derived from 431 

natural or vaccine-induced flavivirus immunity. This could impact ZIKV responses in one of 432 

three ways: (i) boost cross-reactivity immunity, conferring protection against ZIKV; (ii) boost 433 

cross-reactive immunity at the expense of generating protective type-specific ZIKV responses 434 
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(“original antigenic sin”); (iii) neutralize live-attenuated ZIKV without appreciably affecting cross-435 

reactive immunity (sterilizing immunity).  436 

Development of therapeutics. Given that vaccines against ZIKV may be years away, the 437 

development of immediate measures to control or limit ZIKV disease should be a priority. To 438 

date, no drug screening studies have been published with ZIKV. Because DENV infections are 439 

so frequent worldwide, effort over the past decade has been made in evaluating inhibitors of 440 

specific steps in the DENV lifecycle. Such drugs, were they to advance through clinical trial, 441 

might have inhibitory activity against other flaviviruses, including ZIKV. Indeed, antiviral drug 442 

discovery screens have been performed to identify inhibitors of the fusogenic activity of E 443 

protein; the protease and helicase activity of NS3; and the RNA-dependent RNA polymerase 444 

and methyltransferase activities of NS5, with further pre-clinical development ongoing (133). 445 

Additional strategies being considered are repurposing drug screens including the testing of 446 

FDA-approved or well-studied “orphan” drugs against ZIKV infection. Because drugs against 447 

flavivirus proteins could select rapidly for resistant variants, the concept of targeting host 448 

molecules required for DENV infectivity (134) or viral proteins that require oligomerization (135) 449 

has emerged as a possible strategy. Drugs that target steps in flavivirus infection or cell-intrinsic 450 

immunity also could be considered. Finally, passive transfer or antibody-based therapeutics 451 

against ZIKV as prophylaxis or treatment may be possible, once strongly neutralizing human 452 

monoclonal antibodies are isolated, analogous to studies with other flaviviruses (136, 137). 453 

Regardless of the approach, one obstacle to developing ZIKV therapeutics is that a key target 454 

population would be pregnant women; the design and implementation of trials to test new drugs 455 

in pregnant women will be challenging. 456 

 Animal models of ZIKV pathogenesis. Development of vaccines and therapeutics would 457 

be expedited by the development of animal models of the different manifestations of ZIKV 458 

disease. There are few available data in non-human primates apart from the original isolation of 459 

ZIKV from the serum of a febrile rhesus monkey (9) and a recently initiated study to assess 460 
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ZIKV infection dynamics in three rhesus macaques 461 

(https://dholk.primate.wisc.edu/project/dho/public/Zika/public/ZIKV-001-public/begin.view?). 462 

There also is little available data in mice, as only three papers have reported on ZIKV infection 463 

in mice and nothing has been published in almost 40 years (8, 103, 138). Although these 464 

studies suggest that ZIKV can replicate and cause injury in cells of the central nervous system, 465 

whether this pathogenesis is related or not to the current linkages to GBS or microcephaly 466 

remains uncertain and requires further study. A systematic analysis of ZIKV infection and 467 

disease through multiple routes (e.g., intradermal, subcutaneous, or intravenous) in different 468 

strains of mice at different ages is needed. Such studies might include panels of genetically 469 

diverse mice, such as Collaborative Cross mice (139), to identify genetic susceptibility loci that 470 

could be related to human disease or to develop infection models for therapeutic and vaccine 471 

testing (140, 141). In addition to direct infection of newborn, juvenile, adult, and old mice, 472 

studies in which pregnant dams are inoculated with ZIKV and the effects on fecundity, neonatal 473 

infection, and brain development are evaluated could address the presumed linkage to 474 

microcephaly in humans.  475 

Public Health Considerations. The association between ZIKV infection and neurological 476 

complications such as microcephaly and GBS prompted the World Health Organization on 477 

February 1, 2016 to declare a Public Health Emergency of International Concern surrounding 478 

the current ZIKV epidemic in Latin America and the Caribbean (142). The sudden surge of 479 

public health, clinical, and basic science interest in ZIKV will increase our understanding of this 480 

virus that had remained an obscure viral curiosity until quite recently. 481 

Analogous to the introduction of WNV into the United States in 1999 and the arrival of 482 

CHIKV in the Caribbean in 2013, the emergence of ZIKV in Brazil represents another example 483 

of an arbovirus introduction to the Western Hemisphere with significant impacts on human 484 

health and ecology (143). The appearance of new, more severe clinical presentations in recent 485 

ZIKV outbreaks also highlights that familiar infections can produce new phenotypes when 486 
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introduced to new ecological and host systems. The abundance of Aedes aegypti mosquitoes in 487 

Latin America and the Caribbean suggests that ZIKV may become endemic in the region. 488 

Autochthonous transmission also is a possibility in the southern United States, where Aedes 489 

aegypti mosquitos are common, and perhaps farther north where Aedes albopictus may serve 490 

as a vector. However, the presence of cultural and economic factors such as air conditioning, 491 

window screens, indoor lifestyles, and vector control measures, as well as a temperate climate, 492 

may prevent widespread ZIKV outbreaks in the United States, much as DENV and CHIKV have 493 

not caused epidemics here. Nonetheless, imported cases from travelers are likely to increase in 494 

the United States, Europe, and elsewhere (30, 33-35). Indeed, ZIKV infection is now a nationally 495 

reportable disease in the United States. 496 

The lack of specific antiviral measures to combat ZIKV emphasizes the importance of 497 

vector control strategies for combatting arbovirus disease. Such approaches (removing sources 498 

of standing water that serve as breeding sites, larvicide and insecticide application, behavioral 499 

modifications to avoid mosquito exposure, and possibly the controlled introduction of genetically 500 

modified or sterile mosquitoes into an epidemic site) also will protect against DENV, CHIKV, and 501 

other mosquito-transmitted diseases (144). The unexpected linkage between ZIKV and 502 

microcephaly, and the lack of specific measures to prevent or treat ZIKV in pregnant women, as 503 

well as a lack of information to assess the risks posed by ZIKV infection during pregnancy has 504 

prompted public health authorities in some countries to issue highly unusual recommendations 505 

regarding pregnancy including postponement. In the US, the CDC has recommended enhanced 506 

prenatal surveillance of pregnant women who have travelled to areas with ZIKV circulation (74, 507 

80, 91). Such recommendations are framed as “abundance of caution” but must be considered 508 

in light of the reality of implementation. Access to contraceptives, prenatal care, and safe 509 

abortion services should be components of any public health response to ZIKV. 510 

 511 

Conclusions 512 
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ZIKV emergence in the Western Hemisphere has followed what has become a familiar 513 

script, in which a previously obscure vector-borne disease is introduced into a new ecological 514 

system and host population and then spreads rapidly with significant implications for human 515 

health. In the case of ZIKV, this most recent outbreak has been associated with unexpected 516 

clinical presentations, and it has been difficult to evaluate the risks and severity of ZIKV infection 517 

due to an absence of specific diagnostic reagents and a basic understanding of the molecular 518 

virology and pathogenic mechanisms of this virus.  519 

520 
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Figure Legends 526 

Figure 1. Schematic phylogeny illustrating the genetic relationships between selected 527 

flaviviruses that are human pathogens. Dendrogram adapted from (145), based on the amino 528 

acid sequence of the complete polyprotein. 529 

Figure 2. ZIKV pathogenesis. The typical course of ZIKV infection is illustrated (green 530 

background), with potential severe effects requiring further investigation indicated (blue 531 

background). DENV, dengue virus; ADE, antibody-dependent enhancement. 532 

  533 
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